Подбор состава асфальтобетона

Подбор асфальтобетонной смеси — правила выбора состава

Определение и подбор оптимального состава асфальтобетонной смеси и всех исходных материалов обеспечивает получение строительного дорожного полотна высокого качества. Для этого проводят испытания асфальтобетона, чтобы оценить его характеристики по сдвигоустойчивости, трещиностойкости, влагостойкости, износостойкости и устойчивости к старению.

  1. Состав раствора: что включает?
  2. Проектирование структуры
  3. По модулю насыщения
  4. По условиям эксплуатации
  5. По предельным кривым
  6. Подбор состава и расчеты

Состав раствора: что включает?

Количественный, качественный и фракционный состав определяет ГОСТ 9128–2009. Асфальтобетонную смесь разделяют на несколько групп по количеству заполнителей:

  • 1 — до 60%;
  • 2 — около 50%;
  • 3—40% и менее.

Для изготовления асфальтобетонной смеси применяется очищенный мелкозернистый песок.

Основные ингредиенты для асфальтобетона:

  • песок мелкозернистый речной либо очищенный, с добавлением гравия и примесей;
  • органические вяжущие, такие как битум или деготь.

Битум обеспечивает материалу вязкость только в разогретом состоянии, которым покрывают всю площадь заполнителей. Однако важно следить, чтобы этот компонент не стекал с них, обеспечить стойкость, пластичность и противостояние механическим и химическим влияниям. Когда при изготовлении асфальтобетонной смеси добиваются вязкого материала, тогда опираются на ГОСТ 22245, а если жидкого — на ГОСТ 11955. При этом основываясь как на марку битума, так и на класс получаемого асфальта и температуру смеси. Плотность асфальтобетона считают одной из главных характеристик этого материала.

Проектирование структуры

Чтобы подобрать состав асфальтобетона, необходимо четко понимать для каких целей и, в каких условиях он будет эксплуатироваться, например, это пешеходная дорожка, автомагистраль с небольшим потоком транспорта или же максимально загруженная трасса. Все эти подвиды дорог несут разную нагрузку и, соответственно, для каждой необходимо правильно определить состав материала, чтобы не допустить деформаций со стороны полотна. Для испытаний разработана специальная компьютерная программа автодорожных исследований SHRP и ручные труды профессоров. Выведенными формулами и графиками удобно пользоваться при проектировании.

По модулю насыщения

Это значение для вяжущего вещества

асфальтобетона было определено научно-экспериментальным путем. Модуль отображает его содержание в минеральных компонентах с удельной поверхностью 1 м2/кг. Значения этого модуля равны m=3,0—5,0. Он определяет количество вяжущего вещества, которое крайне необходимо знать для получения прочного слоя.

По условиям эксплуатации

Этот метод проектирования подразумевает тесную связь структуры ингредиентов, входящих в состав, и получаемых свойств. Прочность материала зависит от структуры асфальтополотна и влияния на него (механического и температурного), в котором немаловажную роль играют показатели сцепления битума и остальных элементов, а также эластичность формы, реологические свойства, что изменяются в зависимости от температуры. Просчет слоя асфальтобетона путем подставления в выведенное уравнение проф. И.А.Рыбьевым исходных данных позволяет узнать до момента укладки, какую нагрузку будет нести полотно.

По предельным кривым

Суть этого метода заключается в сравнительной характеристике зернового состава, планируемого для использования. Он должен удовлетворять заявленным требованиям в нормативном документе относительно качества материалов. Проводят расчет гранулометрического состава и сравнивают с допустимыми показателями.

Если в таблице данные состава будут совпадать с разрешенными, в таком случае его считают правильным и переходят к следующему этапу строительства. Однако, если данные не отвечают нормативам, делают перерасчет минеральных заполнителей. Объемные доли (частные остатки) фракций переводят в полные, и строят графики предельных кривых плотных смесей. Гранулометрический состав плотной зернистой смеси задан уравнением, варианты которого соответствуют кривым, ограничивающим область допустимых зерновых составов.

Подбор состава и расчеты

Вычисление компонентного состава проводят по этапам:

  • оценка качества исходных ингредиентов;
  • проведение расчета минеральных составляющих;
  • подсчет необходимого количества вяжущего вещества;
  • распределение согласно полученным данным.

Если прочностные характеристики асфальтобетона не удовлетворяют требованиям нормативного документа, тогда разрешено повысить содержание минерального порошка или взять для основы битум более вязкой консистенции. Если же значения прочности меньше допустимого, в таком случае количество минеральных веществ значительно снижают, при этом следует понизить вязкость или даже добавить в смесь полимер.

Количество всех компонентов определяют в зависимости от всей массы по их процентному содержанию.

Водостойкость материала обеспечивают ПАВами. Не менее важное и главное условие, при котором смесь правильной пропорции должна верным образом храниться, исключая слеживаемость ингредиентов. Этот показатель для холодного плотного асфальтобетона отслеживается исходя из параметров остаточной пористости по ГОСТу. В итоге проектирование состава будет достигнуто, если пористость как минерального состава, так и остальные показатели отвечают необходимым требованиям государственного стандарта.

Подбор состава асфальтобетона

Асфальтобетонная смесь представляет собой строительный материал, полученный искусственным путем. Согласно технологии получения, осуществляется рациональный подбор основных компонентов, а затем производится уплотнение материала вибраторами. Требования к характеристикам асфальтобетонного состава включены в ГОСТ 9128.

Какие ингредиенты используются в смеси?

В асфальтобетонном растворе присутствуют такие ингредиенты:

  • компоненты минерального происхождения, такие как натуральный либо измельченный песок, щебенка (гравий), примеси тонкодисперсного порошка (по необходимости);
  • вяжущие ингредиенты органического происхождения, например, битум.

Изначально вместо битума применялся деготь. Однако от него отказались по причине вредного влияния на здоровье человека и окружающую среду. Для смешения компонентов асфальтобетонную смесь нагревают. Назначение асфальтобетона — укладка дороги аэродромов и автодорог, обустройство промышленных полов. По принципу кладки асфальтобетон бывает:

  • уплотненный;
  • литой, отличается высокой текучестью и большим содержанием вяжущего материала, поэтому позволяет вести кладку без уплотнения.

По составу асфальтобетон бывает:

  • щебеночный;
  • гравийный;
  • песчаный.

Вязкость битума и максимальная температура кладки определяют такие разновидности смесей:

  • горячие, укладываемые при 120 °С со связующими в виде вязко-жидких дорожных битумов;
  • холодные, укладываемые до 5 °С, где в качестве вяжущего выступают жидкие битумные материалы нефтяного происхождения;
  • теплые для кладки до 70 °С на основе вязко-жидких битумов.

Однако последний тип, как отдельный вид, не встречается с 1999 года. Виды горячего асфальтобетона по величине остаточной процентной пористости:

  • высокоплотные — 1—2,5%;
  • высокопористые — 10—18%;
  • плотные — 2,5—5%;
  • пористые — 5—10%.

В холодных растворах эта величина составляет 6—10%. По максимальной величине частиц используемого минерального компонента асфальтобетонное полотно может быть:

  • крупнозернистым с величиной частиц до 4 см;
  • мелкозернистым с частицами до 2 см;
  • песчаным с величиной до 5 см.
  • тип А, в котором состав минерального камня 50—60%;
  • тип Б с содержанием камня 40—50%;
  • тип В, включающего 30—40% заполнителя.

Какие существуют алгоритмы проектирования компонентного состава асфальтобетонов?

Для подбора состава асфальтобетонного раствора выбирают рациональное соотношение компонентов. Полученные составы имеют заданную плотность и технические свойства. Существует четыре алгоритма проектирования:

  1. Метод профессора Сахарова П. В.
  2. Способ по модулю насыщения, предоставленный профессором Дюрье М.
  3. Алгоритм проектирования по требуемым условиям эксплуатации покрытия, полученный изысканиями профессора Рыбьева И. А.
  4. Подбор по кривым плотности, разработанный профессором Иванов Н. И. при содействии СоюзДорНИИ.

Вернуться к оглавлению

Пример оптимального подбора ингредиентов асфальтобетонной смеси

В качестве примера компонентов асфальтобетона предлагается рассмотреть задачу: нужна мелкозернистая горячая смесь типа Б второго сорта для создания плотного верхнего шара дороги в третьей климатической зоне. Доступны такие ингредиенты:

  • гранитная и известняковая щебенка зернистостью 0,5—2 см;
  • речной песок;
  • отсев после измельчения гранитной крошки;
  • отсев после измельчения известняка;
  • неактивированный минпорошок;
  • битум материал БНД 90/130.

На первом этапе проводится тестирование и сравнение характеристик, представленных выше ингредиентов. По результатам проверки образцов с различным соотношением компонентов сделаны выводы, что для получения асфальтобетонных смесей Б типа и второго сорта подходят гранитный щебень, речной песок, гранитная пыль, минпорошок, битумный материал.

Известняк и пыль измельченного известнякового компонента не ответили нормативам ГОСТа по прочностным параметрам. На втором этапе рассчитывается щебень. Его содержание при крупности более 0,5 см равно 35-50%. Оптимальным в смесях является содержание 48%. В материале присутствует 95% частиц, указанной крупности, поэтому формула имеет вид:

Таким способом рассчитывают количество щебенки в смеси для фракционного состава.

На третьем этапе определяется состав минерального порошка. Вычисления начинаются с выведения массовых пропорций щебенки, песка и минпорошка с фракционным составом, согласно ГОСТу. Следовательно, содержание зерен размером менее 0,0071 см в минматериале асфальтобетона должно лежать в диапазоне 6-12%. Для вычислений берется 7%. При содержании элементов крупностью 0,0071 см 74% в порошковом минерале, формула расчета выглядит так:

Ввиду присутствия в смеси частиц менее 0,0071 см из гранитных отсевов, фракцию минпорошка принимают, равную 8%. На четвертом этапе рассчитывается количество песка. Общее его содержание составляет:

Песок =100 – (Щебенка минпорошок) = 100 – (50 8) = 42%.

В примере используется речной и гранитный отсев песка. Поэтому пропорции каждого определяются по отдельности. Процентное отношение речного компонента и гранитного отсева устанавливается по их фракции крупностью менее 0,125 см. Для асфальтобетонной смеси зерна должны находиться в количестве 28—39%. Берутся средние 34%, 8% из которых рассчитаны как доля минпорошка. Следовательно, песка нужно 34-8=26% для частиц крупностью менее 0,125 см. Так как массовая часть этих зерен в речном песчаном материале составляет 73%, гранитной пыли — 49%, пропорция для асфальтобетонных смесей Б типа имеет вид:

Округляем полученную величину до 22%, следовательно, содержание отсева из гранитной крошки составляет 42 – 22 = 20%. Подобный расчет проводится для каждой фракции песка и отсева. Данные сводятся в таблице и суммируются величины с размерами меньше заданных для каждого отдельного ингредиента, затем сравниваются с требованиями ГОСТа.

На пятой стадии рассчитывается содержание битумного компонента. Согласно условиям, щебенка, песок, отсев измельченного гранита, минпорошок смешиваются с 6% вяжущего ингредиента, что соответствует средней величине, требуемой в нормативном документе. Готовятся три образца смеси с высотой 7,14 см и соответствующего диаметра. Далее, производится уплотнение комбинированным методом:

  • три минуты на виброплощадке при давлении 0,03 МПа;
  • трехминутным уплотнением на вибропрессе при давлении 20 МПа.

Спустя двое суток определяется средняя плотность, то есть масса в величинах объема асфальтобетона, реальная плотность минеральной составляющей смеси r°. По полученным данным, помимо плотности, рассчитывается пористость минеральной составляющей тестируемых образцов.

Приблизительное количество битумного вяжущего определяется по действительной плотности всех ингредиентов с учетом остаточной пористости асфальтобетона V пор = 4%. При этом средняя плотность проб асфальтобетона с содержанием битума 6% на 100% минералов составляет 2,35 г/см3. Следовательно, формулы расчета имеют вид:

Далее готовится еще три образца асфальтобетона с содержанием битума 6,2% для определения остаточной пористости. Если ее величина составит 4,0 ± 0,5%, готовятся дополнительные 15 образцов такой смеси и тестируют их, согласно ГОСТ 9128-84.

При обнаружении несоответствия с требованиями нормативного документа, производится корректировка смеси и последующие ее испытания, как указано выше.

Подбор состава асфальтобетона

КАЧЕСТВЕННО

БЫСТРО

SEO оптимизация

адаптивная верстка

Ремонт в регионах

  1. Главная
  2. Строительные материалы
  3. Асфальтобетон
  4. Приготовление асфальтобетонной смеси

Для того чтобы обеспечить получение доброкачественного асфальтобетона, необходимо установить правильное количественное соотношение составляющих его материалов. Одним из условий, обеспечивающих механическую прочность асфальтобетона, является плотность его каменного остова.

Существует несколько методов подбора или проектирования состава асфальтобетона. В настоящее время чаще всего пользуются методом подбора по кривым плотных смесей.

На основании теоретических расчетов установлено, что плотные минеральные смеси получаются при определенном весовом соотношении частиц, диаметры которых относятся как 2 : 1 (например, фракции 16—8 мм, 8—4 мм, 4—2 мм и т. д.).

На рис. 1. Кривые оптимальных смесей.

При подборе состава определяется прежде всего гранулометрический (зерновой) состав всех составляющих: щебня (или гравия), песка и минерального порошка.

Так как особенно важное значение имеет содержание в смеси наиболее мелкой фракции (размером 0,074 мм), то прежде всего устанавливается соотношение исходных материалов, обеспечивающее нужное количество этой фракции.

Предположим, что требуется подобрать мелкозернистый асфальтобетон из материалов, имеющих следующий гранулометрический состав:
Таблица 1.

№№Наименование материаловЧастные остатки на ситах, %
5210,50,250,150,074меньше 0,074 мм
1Щебень602010532
2Песок1,55030153,5
3Минеральный порошок4060

Расчет состава каменных материалов для асфальтобетона состоит в нахождении такого весового соотношения имеющихся каменных материалов, при котором одноразмерные фракции в сумме дают требуемое количество данной фракции в смеси, согласно кривым наиболее плотных составов (график 3, рис. 1).

Назначение необходимого количества материалов производится из следующих соображений.

1) Фракция мельче 0,074 мм содержится только в минеральном порошке. Поэтому мы должны взять такое количество минерального порошка, чтобы данной фракции было около 15%:
15X100/ 60 = 25%.
2) Так же рассчитаем количество щебня. Фракция 5 мм содержится в щебне в количестве 60%. В смеси ее должно быть около 25%. Следовательно, для этого потребуется щебня:
25 х 100/ 60 = 42%.

Читайте также:  Распашные ворота для дачи: деревянные, металлические, с использованием профнастила

Далее подсчитывается содержание каждой фракции щебня в этой доле, т. е. в 42%.

Содержание этих фракций определяется делением 42% пропорционально частным остаткам:

42/100 Х 60=25,2%; 42/100 X 20 = 8,4%;

42/100 Х 10 ==4,2%; 42/100 Х 5=2,1 % и т, д.

3) Следовательно, песка потребуется:

Для проверки правильности произведенного подбора суммируем одноразмерные фракции и наносим на график 3 рис. 1.

Если кривая при этом получается плавная и не выходит за пределы кривых плотных смесей, то при полученном соотношении будем иметь наилучшую смесь. Если кривая получается ломаная и отдельные точки ее выходят за пределы кривых, это указывает на недостаток или избыток соответствующей фракции. Изменив соотношение исходных материалов (но так, чтобы количество фракций 0,074 мм не выходило за пределы плотных смесей), можно улучшить состав. Если же отклонение слишком большое, следует добавить другого материала.

При подборе необходимо учитывать, что при применении гравийного материала и щебня мягких пород следует придерживаться верхнего предела кривых. При твердом и хорошо уплотняющемся дробленом каменном материале можно брать меньшее количество фракций размером 0,074 мм. Оптимальное количество битума определяется по величине временного сопротивления сжатию с проверкой процента объемного водонасыщения.

Для этого изготовляют несколько пробных смесей с различным содержанием битума и определяют временное сопротивление сжатию. При недостаточном количестве битума асфальтобетон получается малосвязный, с низким сопротивлением сжатию вследствие слабого сцепления частиц.

С увеличением количества битума сопротивление сжатию возрастает до известного предела. При избытке битума асфальтобетон становится излишне пластичным и сопротивление сжатию снова уменьшается. За оптимальное количество битума принимается то, при котором получается наибольшее сопротивление сжатию.

Расчет асфальтобетонной смеси

Правильное дозирование материалов имеет большое значение для получения доброкачественного асфальтобетона. Дозирование может производиться по весу (у смесителей типа Д-152 и Д-225) и по объему (у смесителя типа Г-1).

Во втором случае должны быть определены объемные веса всех материалов, входящих в состав асфальтобетона. Зная объемный вес материалов, легко перейти к нужным соотношениям, отвечающим запроектированным в процентах по весу Приведем пример: запроектирован следующий состав асфальтобетонной смеси для приготовления в смесителе Г-1: 50% щебня, 30% песка, 20% минерального порошка, 7% битума.

Полная загрузка смесителя 3 т.

При подборе состава количество каменных материалов принимается за 100%, а битум берется сверх 100%. Следовательно, в 3 т смеси битума должно быть:
3000 X7 / 100 +7 = 196,2 кг.
Общее количество каменных материалов 3000 — 196 = 2804 кг.

Запроектированное количество щебня

50 X 2804/ 100 = 1402 кг.
Объем щебня будет равняться 1402/ объемный вес

Так же производится расчет и остальных материалов.

При весовой дозировке необходимо учитывать влажность материала.

Расчет производится следующим образом: предположим, что влажность песка 5%.

Весовое количество сухого песка подсчитывается так же, как и в приведенном выше примере, т. е.

25 X 2804 /100 = 701 кг.

Так как во влажном песке содержится 95% сухого песка и 5% воды, т. е 701 х 5/ 95 = 37,9, или, округляя, 38 кг.

Следовательно, влажного песка нужно взять 701 кг+38 кг=739 кг.

При объемном способе получается менее точная дозировка, поэтому предпочтение следует отдавать весовому способу.

Асфальтовое вяжущее вещество и мастика

Асфальтовая мастика представляет собой твердое вещество темно-бурого или черного цвета

Асфальтовый порошок

Асфальтовый порошок получается в результате тонкого помола асфальтовых известняков или доломитов, содержащих обычно от 4 до 8% твердого тугоплавкого битума. Из-за низкого содержания битума порошок без добавки битума в строительствe не применяется; его смешивают с битумом на заводе или на стройке и получают асфальтовое вяжущее вещество.

Асфальтовая мастика

Асфальтовая мастика представляет собой (при нормальной температуре) твердое вещество темно-бурого или черного цвета. Она выпускается заводами в виде квадратных плит толщиной 10-12 см и весом 32 кг. Изготовляют ее, смешивая в определенном соотношении молотую асфальтовую породу с расплавленным нефтяным битумом. Однородную расплавленную смесь разливают в формы, где она и застывает.
Мастика должна удовлетворять следующим требованиям:

  1. быть однородной;
  2. содержать битума не менее 13% от общего веса;
  3. обладать водонепроницаемостью: при слое толщиной 2 см не пропускать воду под давлением в 3 ати в течении час;
  4. предел прочности при растяжении трамбования образцов — восьмерок — должен быть не менее 30 кг/см2.

Альтовая мастика называется также асфальтовым вяжущим веществом и применяется для изготовления литых асфальтовых растворов.

Как подобрать структуру асфальта

Асфальт – материал для укладки автомобильных дорог, который как обычный бетон заданную прочность приобретает только после остывания и упрочнения исходной смеси. Свойства продукта определяются составляющими, из которых состоит смесь, и их пропорциями.

Состав асфальтобетона

Асфальт бывает разных типов, отличающихся по своему составу. Иногда составляющие и их качество тесно соединены с технологией изготовления. Как правило, асфальт состоит из трех элементов: вяжущего, минерального и каменного. Исключением может быть песчаная модификация, в которой каменная составляющая отсутствует. Рассмотрим подробнее все компоненты асфальта.

Вяжущее вещество

При изготовлении асфальта функцию вяжущего вещества выполняет битум. В недавнем прошлом эту роль исполнял деготь, но он не применяется. Этот элемент асфальта имеет важнейшую черту – вязкость. Ее хватает, чтобы покрыть щебень при составлении смеси, но не сливаться с него. Стойкость вяжущего достаточна для противодействия деформированию, при этом оно должно сохранять пластичность и не образовывать трещины. Битум удовлетворяет всем этим требованиям.
Битум может применяться в разжиженном виде – эмульсии, смеси на воде, или праймера, разведенного на растворителе. При этом обеспечивается повышенная текучесть, что ценно зимой. Когда асфальт остывает, растворитель и вода испаряются, а свойства вяжущего сохраняются.

При производстве асфальта используются битумы вязкие, в соответствии с ГОСТ 22245 и жидкие, регламентируемые ГОСТ 11955. Выбор битума производится в зависимости от марки и классности асфальта, влияет и метод изготовления, холодной либо горячей будет получаемая смесь.

Могут применяться и вещества спецназначения, вяжущие полимерно-битумного типа, благодаря которым повышается упругость создаваемого асфальта. Битумы могут быть модифицированными, их свойства определяются по ТУ.
В разных асфальтобетонах состав битума может быть различным. Так, в щебеночно-мастичном асфальте его содержание равно 5,5 – 7,5%, а в литом – до 9,5%.

Каменный наполнитель

В этой фракции могут находиться не одни лишь камни в виде щебня либо гравия, но и различные минеральные составляющие – пески или отсевы. Имеет важное значение любой показатель, описывающий наполнитель – форма и размеры камней, их содержание в процентах, происхождение, показатели противодействия изнашиванию и т.д. Важнее всего соотношение разных размеров зерен, пыли, глины и т.д. – от этого зависит применяемость наполнителя.

Зерна пластинчатые и игольчатые губительно действуют на готовое покрытие. Нормативное содержание их определяют ГОСТ 8267 и ГОСТ 3344:

  • в высокоплотном асфальте типа А их должно содержаться на более 15%;
  • для асфальта типа Б – до 25%;
  • для асфальта типа А – до 35%.

Зернистость песка и гравия определяет ГОСТ 23735. На износоустойчивость и сопротивляемость морозам, прочностные показатели и твердость материала оказывает воздействие также происхождение каменной составляющей:

  • Щебень, изготовленный из вулканического базальта и пород метаморфического происхождения, используется для материалов с высокой плотностью. Могут использоваться и камни осадочного происхождения – доломиты, известняки, с маркой дробимости 1200.
  • Для прочих типов асфальта применяют щебни с низшими показателями. Щебень из шлаков металлургии для плотного асфальта не применяется, хотя марки 1200 и 1000 используют для холодного асфальта.
  • Для высокоплотного асфальта не используются щебни из гравия.

Необходимо учитывать также морозостойкость каменного наполнителя:

  • для климатической зоны 1-3 высокоплотные асфальты делают из щебня морозостойкости F50, а для высокопористых используется камень F15 и F25;
  • в зонах 4 и 5 используют исключительно горячий асфальт высокой плотности, на который идет щебень F50.

Песок

Он может присутствовать в любом асфальте, но есть сорта песчаного асфальта, в которых песок является единственной минеральной составляющей. Песок может быть природным, добытым в карьере, и полученный при дроблении камня в виде отсева. Свойства песка регламентируются ГОСТ 8736:

  • на высокоплотные асфальты идет песок прочности 800 и 1000, на пористые – 400;
  • частицы глины размером до 0,16 мм должны составлять для плотных асфальтов 0,5%,а для пористых – 1%;
  • Особенно необходимо наблюдать за содержанием в асфальте глины, из-за которой материал набухает и понижает устойчивость к морозам.

Минеральный порошок

Совместно с битумом этот компонент составляет вяжущее вещество. Он способствует заполнению пространств между частицами камня, отчего трение понижается. Зерна порошка микроскопически малы – до 0,074 мм. Его источник – пылеулавливающие системы.
Минеральный порошок – это отходы металлургии и цементных производств, цементная пыль, зола, шлаки, отходы их переработки. Состав, водостойкость и иные параметры порошка регулируются ГОСТ16557.

Добавки

Вносимые добавки могут улучшать состав асфальта и придавать ему особые свойства. Они могут быть разделены на две группы:

  • специально разрабатываемые компоненты, улучшающие свойства – стабилизирующие, пластифицирующие, замедляющие старение;
  • вторичное сырье или отходы – гранулированная резина, сера и другие, стоящие значительно меньше.

Проектирование асфальтобетона

Для различного назначения покрытия – автострада, улица или велодорожка – проектируется особый состав покрытия. Задачей является получение качественного асфальта без перерасхода составляющих. Рассмотрим принципы проектирования:

    Состав зерен минеральной составляющей обеспечивает плотность асфальта и его шероховатость. Используется техника непрерывной и прерывистой гранулометрии. Размеры частиц и пропорции между ними нормируются ТУ.

Полученная кривая измерений должна умещаться между граничными показаниями, и на ней не должно быть переломов, означающих излишек или нехватку одной из фракций.

  • Асфальт разного типа может иметь минеральную составляющую с каркасной или бескаркасной структурой. В первом случае камни касаются и образуют структуру асфальта, а во втором не соприкасаются. Содержание щебня в двух этих структурах находится на уровне 40-45%, и это надо учитывать при подборе.
  • Наибольшую прочность и износостойкость обеспечивает камень, имеющий форму куба или тетраэдра.
  • Труднополируемые породы при своем содержании 50-60% обеспечивают заданную шероховатость асфальта. Сохранение шероховатости, свойственной природному сколу, обеспечивает устойчивость асфальта к сдвигу.
  • Если в материале использован песок дробленый, его сдвигоустойчивость будет выше, поскольку в карьерном песке поверхность более гладкая. Эти же причины обусловливают уменьшенную устойчивость к сдвигу материала на основе морского гравия.
  • Слишком мелкий минеральный порошок вызывает повышение пористости и расхода битума. Большинство отходов промышленности как раз таким и оказывается, поэтому минеральный порошок требует активации с обработкой битумом. При этом экономия вяжущего сопровождается ростом влаго- и морозоустойчивости.
  • Выбирая битум, надо опираться на вязкость, обеспечивающую плотность покрытия, и на погоду. В местах с сухим климатом состав должен гарантировать минимум пористости. Если смесь холодная, на 10-15% уменьшают количество битума, понижая слеживаемость.
  • Подбор состава

    Процесс подбора производится единообразно:

    • оцениваются свойства битума и минеральных ингредиентов с точки зрения их пригодности для итоговой цели;
    • вычисляется пропорция между камнем, песком и порошком с целью получения асфальта наибольшей плотности;
    • количество битума подбирается таким, чтобы исходные материалы позволили получить итоговый продукт с заданными свойствами.

    После проведения расчетов выполняются лабораторные исследования. Проверяется пористость, после этого соответствие всех реальных технических показателей ожидаемым. Проведение расчетов и испытаний производится, пока создаваемая смесь не будет соответствовать техзаданию.
    Асфальт – материал сложный, и его качества и прочностные показатели неоднозначны и зависят от состава и технологии приготовления смеси.

    ПРОЕКТИРОВАНИЕ И ПРИГОТОВЛЕНИЕ АСФАЛЬТОБЕТОННОЙ СМЕСИ

    Расчет состава асфальтобетонной смеси, укладываемой в горячем состоянии.

    Расчет состава смеси заключается в определении рационального соотношения между составляющими его материалами,обеспечивающего определенные заданные технологические иэксплуатационные свойства.

    В задании на проектирование должно быть указано: характеристика исходных материалов, вид асфальтобетона, маркаасфальтобетонной смеси и ее тип, а также плотность, назначение и конструктивный слой, крупность. Запроектированный состав должен быть экономичным с использованием местных дорожно-строительных материалов.

    Порядок подбора состава асфальтобетонной смеси, применяемой в горячем состоянии по методу предельных кривыхплотных смесей, заключается в следующем: определяют зерновойсостав минеральных материалов (щебня, песка, минеральногопорошка) — все материалы должны удовлетворять требованиямГОСТ 9128—84; определяют соотношение между составляющими минеральными материалами; полученный зерновой составсравнивают с пределами зернового состава согласно выбранному типу асфальтобетона. Если подобранный состав будет в пределах, указанных в табл. 11 для данного типа смеси, то расчетминеральных материалов считают правильным. В противномслучае изменяют соотношение между составляющими материа­лами и делают перерасчет по фракциям.

    Читайте также:  Рехау окна установка. Окна века или рехау что лучше установить

    Выбрав соотношение между минеральными материалами, го­товят пробные образцы с различным количеством вяжущего и подвергают их испытанию. Из нескольких вариантов выбирают тот, который показал лучшие результаты. Затем из смеси подо­бранного состава готовят контрольные образцы, подвергая их всем испытаниям согласно ГОСТ12801—84. Показатели физико-механических свойств должны соответствовать требованиям, указанным в табл. 12.

    Пример расчета.Подобрать мелкозернистую асфальтобетонную смесь I марки типа А, уплотняемую в горячем состоянии из следующих материалов: щебня гранитного (Rсж=120 МПа), песка природного с Мкр = 3,1, минераль­ного порошка из известняка-ракушечника и нефтяного битума марки БНД 60/90.

    Определяем зерновой состав минеральных материалов и результаты за­писываем в табл. 13.

    Из табл. 11 выписываем рекомендуемый состав минеральных материалов для мелкозернистого асфальтобетона типа А и записываем в табл. 14.

    Необходимое содержание щебня, песка и минерального порошка опреде­ляем в предположении, что частицы крупнее 5 мм содержатся только в щеб­не, а мельче 0,071 мм — только в минеральном порошке. По табл. 11 нахо­дим, что щебня крупнее 5 (5—10) мм должно быть в смеси 50—65% (так как через сито с отверстиями 5 мм должно проходить 35—50% материала). Примем требуемое содержание щебня крупностью 5 мм — 54%.

    Поскольку зерен крупнее 5 мм в щебне (см. табл. 13) содержится 90,1% <48,1 + 42,0), то щебня требуется:

    Количество минерального порошка

    где а — требуемое содержание в минеральной части асфальтобетона ча­стиц мельче 0,071 мм (из табл. 11 видно, что таких частиц должно быть 4— 10%). Для расчета примем а=7%; b -содержание частиц мельче 0,071 мм в исходном минеральном порошке, %; (из табл. 13) b = 73,4%;

    Необходимое содержание песка:

    Найденное количество щебня, песка и минерального порошка распреде­ляем по фракциям пропорционально заданному зерновому составу (см. табл. 13) и записываем в табл. 15, строка 1:

    На сите 15 мм 0 %;

    На сите 10 мм 28,6 %;

    На сите 5 мм 24,8 %;

    На сите 2,5 мм 5,8 %;

    По такому же принципу определяют количество каждой фракции в при­нятом количестве песка (31,1%) и минерального порошка (9,7%), строки 2 и 3 табл. 15.

    Частные остатки в щебне, песке, минеральном порошке на одинаковых ситах суммируют и записывают в строку 4 табл. 15.

    Например, па сите 10 мм частный остаток 28,6%, а так как таких частиц в других материалах нет, то и суммарное количество равно 28,6%, а на си­те 2,5 мм – 9,1% (5,8% в щебне и 3,3% в песке) и т.д.

    Затем определяют полный остаток на каждом сите. Для этого суммиру­ют частный остаток на данном сите со всеми частными остатками на преды­дущих ситах (строка 5, табл. 15). Полный остаток на сите с отверстием 10 мм составляет 28,6%; 5 мм – 53,4% (28,6+24,8); 2,5 мм— 62,5% (53,4+ +9,1) и т. д. Строку 6 «прошло через сито» подсчитывают как разность меж­ду 100% и полным остатком на данном сите.

    Например, полный остаток на сите с отверстиями 20 мм равен 0, поэтому через сито прошло 100%, на сите с отверстиями 10 мм прошло 71,4% (100— —28,6), через сито 5 мм прошло 46,6% (100—53,4) и т. д.

    Сравнивая эти результаты с пределом проходящих частиц (см. табл. 11) видим, что количество частиц, прошедших через сито, будет в пределах ре­комендуемых, значит подобранное соотношение минеральных материалов удовлетворительное.

    Для более точного подбора соотношений минеральных материалов между собой следует подобранный состав (строка 6 табл. 15) нанести на кривые оптимального зернового состава.

    Наименование и тип смеси

    Массовая доля зерен минерального материала. %, мельче данного размера, мм

    1. Зерновые составы минеральной части горячих и теплых смесей для плотных асфальтобетонов, применяемых в верхних слоях покрытия

    Непрерывные зерновые составы

    Прерывистые зерновые составы

    2. Зерновые составы минеральной части горячих и теплых смесей для плотных и пористых асфальтобетонов, применяемых в нижних слоях оснований

    Непрерывные зерновые составы

    Плотные крупнозер- нистые типов

    Прерывистые зерновые составы

    Плотные крупнозер- нистые типов

    Непрерывные зерновые составы

    Пористые и высокопо-ристые крупно- и мелко зернистые

    Прерывистые зерновые составы

    Пористые и высокопо-ристые крупно- и мелко зернистые

    3. Зерновые составы холодных смесей применяемых в верхних слоях покрытия

    Состав асфальтобетона

    От дорожного покрытия требуется прочность и надежность, оно должно выдерживать многотонную нагрузку и не деформироваться под воздействием природных явлений. Асфальтобетон обладает именно такими свойствами и поэтому используется при строительстве дорог. Асфальтобетонная смесь различается по составу, каждый вид предназначен для определенных дорожно-строительных работ. “Все об асфальтобетоне: состав, использование, ГОСТы” – так звучит тема данной статьи.

    Общие сведения об асфальтобетонной смеси

    Во всем мире асфальтобетон является самым оптимальным материалом для создания и ремонта пешеходных и проезжих зон, территорий при аэродромах и взлетных полос. Качество покрытия зависит от многих факторов: соблюдены ли технологии укладки и состава смеси, добавляются ли в нее дополнительные компоненты, повышающие стойкость и пластичность материала. Основу асфальтобетонной смеси составляют измельченный в крошку гравий (или щебень) и песок, связывает эти компоненты битум. Подбор компонентов неслучаен, каждый отвечает за определенные задачи:

    1. Битум исполняет роль «клея», связывающего твердые и сыпучие компоненты. Получить битум можно при разработке природных асфальтовых залежей или путем химического синтеза нефтепродуктов.

    1. Щебень и песок заполняют пустоты, усиливая конструкцию и обеспечивая ее долговечность. Если данных компонентов в смеси недостаточно, асфальт не держит форму уже на этапе укладки, а в дальнейшем механическая прочность становится еще меньше.

    Внимание! Слишком большое количество щебня и песка также пагубно для состава асфальтобетона. В этом случае покрытие крошится и быстро изнашивается.

    1. Минеральный порошок получают при размалывании известняка, шлаков и доломитов. Он необходим для придания битуму меньшей текучести. Кроме того, порошок позволяет существенно сократить расход битума.

    Нужно отметить, что асфальтобетонные смеси используются не только для создания нового дорожного полотна, литой асфальт подходит для ремонта – он не требует уплотнения и выравнивания и не создает перепадов с уровнем старого покрытия.

    Современные технологии изменили асфальтобетон

    Современный мир диктует свои правила. Ремонт дорог (или укладка новых) желательно проводить быстро, без погрешностей и делать это в любую погоду. Литой асфальтобетон отвечает всем требованиям. Соответствующий ГОСТ Р 54401-2011 регламентирует технологию укладки без уплотнения.

    Пластичность смеси обеспечивается ее высокой температурой – 190 и повышается за счет еще большего нагревания.

    Состав включает большее количество полимерных добавок и битума, но при этом уменьшается доля минералов, что минимизирует зернистость. Повышенная тягучесть позволяет не уплотнять смесь.

    Для связки всех компонентов литого асфальта применяется полимерно-битумная смесь. Она также усиливает покрытие, наделяя его повышенной износостойкостью, не допуская быстрого появления трещин в течение эксплуатации.

    Важно! Только неукоснительное соблюдение технологии производства литого асфальтобетона позволит получить прочное покрытие. Любое нарушение состава ведет к изменению свойств.

    Декорирование дорожных покрытий, тротуаров, площадок

    Асфальтобетон может использоваться не только для стандартных типов покрытий, но и при создании особого дизайна пешеходных зон. С помощью цветного асфальта наносится разметка на проезжей части.

    Нестандартный вид покрытия получается путем тиснения или рифления, цвет придают минералы и цветные инертные материалы. Яркость оттенков регулируется осветлением битума или использованием искусственного.

    Главным недостатком данной технологии является ее высокая стоимость. Для сокращения расходов цветные гранулы не добавляются в основную смесь на стадии изготовления. Крошку втирают в верхний слой уже положенного, но не застывшего асфальта.

    Физико-механические характеристики

    ГОСТ 9128-97 фиксирует нормативы физических параметров, соблюдение которых влияет на качество полученной асфальтобетонной смеси:

    1. Плотность состава варьируется в зависимости от типа песка. Шлаковый дает плотность 2300 кг/м3, а кварцевый – 2100 кг/м3. Как видно, шлаковый песок лучше уплотняет смесь. Данные показатели важны при количественных расчетах материала перед его изготовлением.
    2. Нормы расхода материала при укладке прописаны в СНиПе 3.06.06-88.

    ГОСТ 9128-97 регулирует вес смеси, он не должен превышать 2000-2200 кг/м3.

    Важно! Возможны погрешности ввиду геодезических особенностей участка и используемой марки асфальта.

    Расход дорожной смеси

    При выведении средней величины расхода материала учитываются толщина слоя и площадь участка, структура исходной и конечной поверхностей.

    Основная формула для горячего материала выглядит так: 1м 2 участка требует 25 кг асфальтобетона для укатки слоя толщиной 1 см.

    Расход холодного асфальтобетона выше в 4 раза, но это компенсируется его эксплуатационными характеристиками и особенностями укладки.

    Несмотря на наличие формулы и регулирующих стандартов, расчеты объемов производятся специалистами после тщательного изучения участка. Нередко требуется лично посетить место будущей стройки, чтобы учесть все геодезические нюансы.

    Прочный асфальтобетон с низкой себестоимостью

    Продлить срок службы часто используемого дорожного покрытия (например, трасса между городами) можно путем долевого изменения состава классической асфальтобетонной смеси. Увеличение количества измельченного щебня повышает износостойкость полотна и усиливает сцепление. ГОСТ 31015-2002 определяет пропорциональную составляющую щебня, она может доходить до 80%. Также в состав добавляется мастика, ее доля составляет до 7,5%. Для снижения расхода материала используются целлюлозосодержащие добавки.

    Основные составляющие заявлены в названии: «щебеночно-мастичный асфальтобетон», укладка производится в горячем виде. Высокое качество дорожного полотна из ЩМА является причиной приоритетного использования именно этой смеси для укладки международных трасс и взлетных площадок аэропортов.

    Что входит в состав асфальтобетона?

    Состав смеси предусматривает пропорциональные изменения в зависимости от характеристик строящегося участка и используемого на нем асфальтобетона.

    Вяжущее вещество

    Для связки сыпучих компонентов применяется смолоподобный продукт – битум. Каждая марка асфальта предусматривает свою величину, но не более 6% битума на всю смесь. Задача битума в обеспечении прочности, пластичности и влагостойкости дорожного покрытия.

    Использование битума в разных пропорциях приводит к получению асфальтобетонной смеси с различными характеристиками. Делается это для облегчения работы с материалом в разных климатических зонах, а также для повышения прочности готового дорожного полотна.

    Битум может быть вязким или жидким. При нагревании материала вязкость уменьшается. Жидкий битум используется в зимнее время. Добавляются растворители и присадки, которые возвращают битум в вязкое состояние при затвердевании.

    Каменный наполнитель

    Основа любой асфальтобетонной смеси – это различный по фракциям щебень и гравий. На консистенцию влияет каждая мелочь: размер и форма камней, их происхождение, характеристики сопротивляемости. Не последняя роль у процентного соотношения компонентов.

    • Осадочные и метаморфические породы подходят для производства материалов высокой плотности.
    • Щебень из шлака или гравия невозможно использовать для высокоплотного слоя покрытия.

    Зерновой состав тщательно проверяется. Соотношение зерен по диаметру, процент пыли и глины в составе влияет на качество покрытия. Недопустимо чрезмерное количество пластинчатых или игольчатых зерен. Согласно ГОСТу 8267, а также ГОСТу 3344 процентное содержание таких зерен не должно превышать 15% для плотной смеси, 25% для типа Б и 35% для типа А.

    Песок

    Нормативные данные прописаны в ГОСТ 8736. Песок обязательно входит в состав любой разновидности асфальтобетонной смеси. При том одинаково возможно использование отсева или карьерного материала.

    • В зависимости от необходимой пористости используется материал разного класса прочности, чем выше пористость, тем ниже класс: от 800 или 1000, до 400.
    • Глина в смеси влияет на морозостойкость, поэтому диаметр таких частиц не превышает 0,16 мм. Плотные смеси допускают содержание до 0,5 %, а пористые 1%.

    Минеральный порошок

    Цементная пыль применяется для заполнения мельчайших пустот в асфальтобетоне для обеспечения прочности покрытия. Зерна в размере не превышают 0,074 мм. Основные производители этого компонента – цементные и металлургические предприятия. Материал собирается при помощи системы пылеуловителей. ГОСТ 16557 регламентирует основные характеристики.

    Дополнительные компоненты

    Изменение классического состава возможно для придания асфальтобетону специфических особенностей. В этом случае добавляются компоненты, которые можно разделить на 2 типа:

    1. Специально разработанные для стабилизации или продления срока эксплуатации, пластификаторы. Этот тип компонентов дороже.
    2. Вторичное сырье, например, переработанные покрышки и сера. Стоимость таких компонентов ниже.

    Как проходит производство асфальтобетонных смесей?

    Прежде, чем приступить к производству смеси, проводится анализ будущего покрытия согласно его основному назначению. Состав асфальтобетонной смеси для тротуара будет существенно различаться от смеси для автобана.

    Технологический процесс состоит из следующих этапов:

    1. Подготовка минеральных материалов, в нее входит сушка и нагрев.
    2. Подготовка битума. При подаче вяжущее вещество распыляется для равномерного обволакивания каждой фракции.
    3. Порционное деление всех компонентов.
    4. Смешивание всех компонентов, длительность варьируется в зависимости от зернистости. Очередность добавления компонентов влияет на качество смеси. Лучший эффект достигается единовременным смешиванием всех составляющих.
    5. Погрузка смеси в специальные бункеры или сразу в кузова самосвалов.
    Читайте также:  Самые эффективные средства от тараканов в квартире

    Курсовая работа: Проектирование состава асфальтобетона

    ГЛАВА 1”Выбор вида, типа и марки асфальтобетона”

    ГЛАВА 2 ”Оценка качества исходных материалов”

    2.3 Минеральный порошок

    ГЛАВА 3 ”Расчёт состава минеральной части а/б”

    3.1 Расчёт по кривым плотных смесей

    3.2 Графический метод

    ГЛАВА 4 ”Выбор оптимального содержания битума”

    ГЛАВА 5 ”Технология приготовления асфальтобетона”

    ВВЕДЕНИЕ

    Дорожная одежда состоит из подстилающего слоя, основания и слоев покрытия. Оно воспринимает давления от подвижных нагрузок и распределяет их по земляному полотну. Так как наибольшее давление возникает на поверхности и уменьшается по глубине, дороге необходима прочная одежда, что в свою очередь требует качественных материалов, уплотненных до высокой плотности.

    Дороги с твердым покрытием имеют асфальтобетонную или цементобетонную поверхность, которая сочетает грузонесущие свойства с соответствующим показателям сопротивления скольжению и износу, непроницаемости и долговечности.

    Цель данной курсовой работы: выполнить проектирование состава асфальтобетона для устройства верхнего слоя покрытия автомобильной дороги находящейся во II-ой дорожно-климатической зоне III категории дороги.

    Асфальтобетоном называют материал, который получают после уплотнения асфальтобетонной смеси, приготовленной в смесителях в нагретом состоянии щебня или гравия, песка, минерального порошка и битума в рационально подобранных соотношениях. Если вместо битума применяют дёготь или полимер, то соответственно материал называют дёгтебетон или полимербетон.

    Асфальтобетонные смеси являются основным видом битумоминеральных смесей. Существует большое количество смесей, которые различаются по крупности и количеству щебня, содержанию природного или дроблёного песка, количеству минерального порошка, вязкости битума. В результате получают смеси с различной структурой, которая и обеспечивает сопротивление покрытий эксплуатационным воздействиям. Смеси с большим содержанием щебня имеют скелет из каменных частиц, который воспринимает основную механическую нагрузку. Смеси, состоящие из минерального порошка, песка и битума, представляют собой асфальтовый раствор, их механические свойства определяются главным образом вязкостью битума. Чем меньше в смеси скелетообразующих частиц, тем выше должна быть вязкость битума.

    95% автомобильных дорог строятся с асфальтобетонным покрытием, так как имеет ряд преимуществ над другими покрытиями. Главное отличие асфальтобетона от бетонов на минеральных вяжущих заключается в его термопластичности, т.е. размягчении и снижении прочности до 0,8-1,0 МПа в жаркие летние дни, когда температура покрытия поднимается до +50°С, и повышении твёрдости и прочности до 10,0-15,0 МПа при отрицательной температуре в зимнее время года.

    Гранулометрический состав асфальтобетонной смеси определяет содержание пор в минеральной части асфальтобетона, которое в свою очередь определяет количество битума в смеси и взаимосвязано с остаточной пористостью. Оптимальная остаточная пористость взаимосвязана с вязкостью связующего вещества и комплексом эксплуатационных факторов – транспортных, атмосферных, климатических. Например, при маловязком разжиженном битуме необходима высокая пористость асфальтобетона, обеспечивающая быстрое испарение лёгких фракций из битума и как следствие повышение сопротивления эксплуатационным факторам.

    Комплекс эксплуатационных факторов влияет также на выбор марки битума. В холодном климате надо применять битум с меньшей вязкостью, чем жарком. Тяжелое движение транспортных средств диктует применение высоковязкого битума.

    I «ВЫБОР ВИДА, ТИПА И МАРКИ АСФАЛЬТОБЕТОНА»

    Выбор вида, типа и марки асфальтобетона необходимо выполнять в соответствии с требованиями ГОСТ 9128 – 97

    Основные параметры и показатели:

    1. В зависимости от вида минеральной составляющей подразделяют на щебеночные, грав ийные и песчаные.

    2.Смеси в зависимости от вязкости используемого битума и температуры при укладке подразделяют на:

    – горячие, приготавливаемые с использованием вязких и жидких нефтяных д орожных битумов и укладываемые с температурой не менее 120 °С;

    – холодные, приготавливаемые с использованием жидких нефтяных дорожных битумов и уклад ываемые с температурой не менее 5 °С.

    3. Горячие и холодные смеси-асфальтобетоны

    а) Горяч ие смеси и асфальтобетоны в зависимости от наибольшего размера минеральных зерен подразделяют на:

    крупноз ернистые с размером зерен до 40 мм;

    мелк озернистые » » » до 20 мм;

    песчаные » » » до 5 мм.

    Асфальтобетоны из горячих смесей в зависимости от величины остаточной пористости подразделяют на виды:

    высокоплотные с остаточной пористостью от 1,0 до 2,5 %;

    плотные » » » св. 2,5 до 5,0 %;

    пористые » » » св. 5,0 до 10,0 %;

    высокопористые » » » св. 10,0 до 18,0 %.

    б) Холодные смеси под разделяют на мелкозернистые и песчаные.

    Асфальтобетоны из горячих смесей в зависимости от величины остаточной пористости подразделяют на виды:

    высокоплотные с остаточной пористостью от 1,0 до 2,5 %;

    плотные » » » св. 2,5 до 5,0 %;

    пористые » » » св. 5,0 до 10,0 %;

    высокопористые » » » св. 10 ,0 до 18,0 %.

    Асфальтобетоны из холодных смесей должны иметь остаточную пористость свыше 6,0 до 10,0 %.

    4. Щебеночные и гравий ные горячие сме си и плотные асфальтобетоны в зависимости от содержания в них щ ебня (гравия) подразделяют на типы:

    А с содержанием щебня св. 50 до 60 %;

    Б » » » св. 40 до 50 %;

    В » » » св. 30 до 40 %.

    Щебеночные и гравийные холодные смеси и соответствующие им асфальтобетоны в зависимости от содержания в них щебня (гравия) подразделяют на типы Бх и Вх.

    Горячие и холодные песчаные смеси и соотв етствующие им асфальтобетоны в зависимости от вида песка подразде ляют на типы:

    Г и Гх – на песках из отсевов дробления, а также на их смесях с природным песком при содержании последнего не более 30 % по массе;

    Д и Дх – на природных песках или смесях природных песков с отсевами дробления при содержании последних менее 70 % по массе.

    Высокоплотные горячие смеси и соответствующие им асфальтобетоны содержат щебень свыше 50 до 70 % Горячие и холодные песчаные смеси и соответствующие им асфальтобетоны в зависимости от вида песка подразделяют на типы:

    Г и Гх – на песках из отсевов дробления, а также на их смесях с природным песком при содержании последнего не более 30 % по массе;

    Д и Дх – на природных песках или смесях природных песков с отсевами дробления при содержании последних менее 70 % по массе.

    Высокоплотные горячие смеси и соответствующие им асфальтобетоны содержат щебень свыше 50 до 70 %.

    Анализ условий работы проектируемого асфальтобетона в конструкции (транспортные нагрузки, максимальные уклоны, геолого-климатические условия);

    Выбор способа производства работ в зависимости от погодно-климатических условий и района строительства;

    Выбор исходных материалов;

    Расчёт состава асфальтобетона:

    а) расчёт состава минеральной части по кривым плотных смесей:

    цель – получить минеральный состав с минимальным количеством пустот.

    Составы могут быть непрерывные и прерывистые.

    б) определение оптимального количества битума:

    определяем опытным путём:

    · готовят смеси с разным количеством битума

    щебень и песок нагревают до 150 – 170°С,

    битум до 130 – 150°С,

    смесь до 140 – 160°С.

    · уплотняют при давлении 40 МПа.

    Приготовление и испытание контрольной смеси:

    определяют физико-механические показатели и сравнивают с требованием ГОСТ.

    Технические требования к дорожному асфальтобетону из горячих, плотных смесей:

    В зависимости от качественных показателей а/б разделяют на три сорта (марки):

    Предел прочности при сжатии:

    · при 20°С Þ R20, МПа

    · при 50°С Þ R50, Мпа – характеризует здвигоустойчивость

    · при 0°С Þ R0, Мпа – характеризует хрупкость;

    1. Коэффициент водостойкости:

    Кв = Rв/R20, где Rв – предел прочности водонасыщенного образца;

    2. Коэффициент водостойкости при длительном водонасыщении:

    Квд = Rвд, где Rвд – прочность образца после насыщения, в течение 15суток;

    4. Водонасыщение по объёму, % [1 ¸ 4]%;

    5 Пористость минерального остова:

    · для типов А и Б не более 19%

    · для типов В, Г, Д не более 22%

    1. Остаточная пористость, % по объёму [2 ¸ 5]% – для плотных а/б.

    Этапы формирования структуры асфальтобетона:

    1. Период активного структурообразования протекает в момент объединения битума с минеральным материалом.

    2. Сближение структурных элементов смеси при её укладке и уплотнения.

    3. Период стабилизации микроструктурных связей в асфальтобетоне при эксплуатации покрытия.

    Повышение вязкости битума при охлаждении.

    Повышение вязкости битума за счёт улетучивания лёгкого углеводорода, за счёт стабилизации ориентированных молекул битума или при появлении новообразования в зоне контакта.

    Доуплотнение под действием транспорта.

    На стадии разработки проекта автомобильной дороги выбирают асфальтобетон определенной разновидности, конкретно для каждого конструктивного слоя дорожной одежды.

    В верхних слоях покрытий на дорогах всех категорий используют только плотный асфальтобетон.

    Нижние слои покрытий на дорогах I – II категорий устраивают из пористого асфальтобетона, а на дорогах III – IV категорий – из высокопористого асфальтобетона.

    В верхних слоях оснований можно использовать как пористый, так и высокопористый асфальтобетоны.

    При стадийном строительстве нижний слой покрытий устраивают, как правило, из плотного крупнозернистого асфальтобетона.

    Вид и тип плотного асфальтобетона для верхних слоев покрытий назначают в зависимости от категории дороги и климатических условий района строительства.

    В районах I, II и частично III дорожно-климатических зон, характеризующихся холодным и влажным климатом, для устройства верхних слоев покрытий целесообразно использовать смеси типа Б с содержанием щебня или гравия 40 – 50 %, а также типов В, Г и Д, в которых формируется замкнутая поровая структура, препятствующая прониканию воды в покрытие. При этом в районах II дорожно-климатической зоны рекомендуется применять асфальтобетоны с остаточной пористостью не более 5% объема.

    Для второй дорожно-климатической зоны (ГОСТ 9128-97):

    ГОСТ 9128-97 для типа Б марки II

    Содержание зёрен пластинчатой и игловатой формы, %

    При строительстве верхнего слоя покрытий на дорогах третьей категории можно использовать горячие смеси типов А, Б, В, Г и Д II марки, а также холодные асфальтобетонные смеси типов Бххх марки I.

    В соответствии с требованиями нормативных документов и данными задания для проектирования асфальтобетонной смеси мною выбран асфальтобетон типа Б из горячих смесей марки II, потому что:

    · результаты испытаний удовлетворяют требованиям ГОСТ 9128 – 97

    · из практических соображений, для второй климатической зоны с её холодным климатом очень важно. Он обладает достаточно высокой сопротивляемостью механическим и атмосферным факторам, поэтому его применяют для устройства верхнего слоя двухслойных покрытий и при интенсивном движении

    · по сравнению с типом Б, тип А является многощебенистым а/б, а т.к. щебень дороже песка, тип А менее экономичен. Тип Б проще запроектировать, т.к. тип А более требователен к процентному содержанию частиц на ситах.

    ГЛАВА 2 «ОЦЕНКА КАЧЕСТВА ИСХОДНЫХ МАТЕРИАЛОВ»

    2.1 Крупный заполнитель(щебень):

    Для приготовления щебня используют прочные морозостойкие магматические, метаморфические и осадочные горные породы, а также прочные и морозостойкие медленноохлаждённые металлургические шлаки.

    Прочность при сжатии горных пород должна быть не менее 100…120 МПа, а осадочных карбонатных пород металлургических шлаков – не менее 80…100 МПа.

    Показатель прочности при износе в полочном барабане для щебня из горных пород не более25…35%, а для шлаков – не более 35%. Марки по износу бывают: И 1, И2, И3, И4.

    Щебень для асфальтобетонных смесей должен быть чистым, (по ГОСТ 8267 п.4.71 таблица 9) не допускается содержание глинистых и пылеватых частиц свыше 1%.(т.к в соответствии с ГОСТ 25100 щебень гранитный является магматической породой ) Форма зёрен щебня должна быть приближена к тетраэдальной и кубовидной, а поверхность к – шероховатой, что повышает внутреннее трение и прилипание вяжущего. Содержан ие зерен пластинчатой (лещадной) и игловатой формы в ще бне и гравии должно быть, % по массе, не более:

    15 – для смесе й типа А и высокоплотных;

    25 – для смесе й типов Б, Бх;

    35 – для смесей типов В, Вх.

    Щебень для а/б смесей должен выдерживать без разрушения не менее 50 циклов переменного замораживания и оттаивания, а для нижнего слоя покрытия – не менее 25 циклов. Отсюда марки морозостойкости: F20, F25, F50.

    – марка по прочности при раздавливании в цилиндре – 1000

    – марка по износу в полочном барабане – ИII

    Оцените статью
    Добавить комментарий