Расчет генератора для ветряка

Расчет генератора для ветряка

Сам генератор для ветрогенератора можно рассчитать по формуле: Е = 2fnmNBS.
Обозначения:
f – число оборотов в секунду ротора с магнитами [ об/с ]
n – число магнитов
m – число катушек на одной фазе,
если генератор однофазный, то просто число катушек
N – число витков на катушке
B – магнитная индукция в зазоре[ Тл ]
S – площадь магнита с которой магнитный поток снимается в катушку, если
магнит больше полюсного наконечника, то площадь наконечника.[ м2 ]

Соотношение магнит/катушка для трехфазного генератора должно быть 4/3 или 2/3.
Для однофазного 1/1.

Пример расчета аксиального генератора.
К примеру возьмем генератор состоящий из 12 полюсов на прямоугольных магнитах размером 40*15*10мм. Имеющий 9 катушек намотанных проводом сечением 1мм по100 витков в каждой катушке, и 12 полюсов ротора. Исходя из этих параметров нам нужно получить напряжение холостого хода.

Для этого 2 умножаем на обороты генератора в секунду, пусть будет 5 об/с (300 об/м), Далее полученную сумму умножаем на количество полюсов генератора 12, и умножаем на количество катушек в одной фазе 3.

Полученную сумму умножаем на количество витков в одной катушке 100, и умножаем на магнитную индукцию в зазоре 0,5Тл, и умножаем на площадь поверхности магнита 0,0006м2, в итоге всех умножений должно получится напряжение генератора на заданных оборотах.

На 300 об/м получается почти 11 вольт. Если соединять фазы треугольником то напряжение будет 10,800вольт. Для звезды нужно напряжение фазы умножить на 1,7 получается 18вольт.

Сопротивление фазы
Теперь у нас есть напряжение на заданных оборотах, чтобы вычислить мощность генератора для ветряка нам нужно высчитать сопротивление обмотки генератора. Это делается по формуле R= pL/S,

Переменные значения формулы R= p*L:S,
p – удельное сопротивление, в данном случае удельное сопротивление меди 0,0175Омм2/м

L – длинна провода

S – площадь сечения провода мм2.

Теперь попробуем посчитать, и так у нас 9 катушек по 100 витков проводом 1 мм, в общем получается 900витков, значит количество витков в фазе 300. Теперь нужно найти длину этих 300 витков.

Если не знаем длину провода, то будем считать примерно, и так катушки по высоте у нас к примеру 68мм треугольной формы, а ширина в верхней части 45 мм, в нижней 30мм, ширина витков 14мм, значит можно взять среднюю длину одного витка. Расчет такой 68-7+68-7+30-7+45-7= 181мм, получается средняя длинна витка в катушке 181*300 и получается 54 метра провода в фазе, 7 мм это ширина витков в катушке поделенная на 2.

Теперь удельное сопротивление меди по формуле выше умножаем на длину провода и делим на площадь сечение проводника, площадь сечения определяется так, S=pd2,

переменные формулы S=pd2 .
р – равно 3,14

d- диаметр провода мм

У нас провод диаметром 1 мм, площадь его сечения получается 3,14*1*1=0,785мм2., округлим до 0,8 мм2.

Округлим и получим сопротивление фазы 1,1 Ом.

Теперь вернемся к нашему генератору, и так мы получили на 300 об/м 11 вольт с фазы. При соединении звездой напряжение составит 11*1,7=18,7 вольт.

Теперь высчитаем мощность этого генератора при 300 об/м, 18 вольт генератора минус 12 вольт аккумулятора разделить на сопротивление генератора. Сопротивление фазы 1,1 Ом умножим для звезды на 1,7 и получим 1,8 Ом.

Получается 18-12:1,8= 3,3 Ампера на зарядку аккумулятора.

Наш теоретический аксиальный генератор с магнитами 40*15*10 по 12 на каждый диск ротора, и 9 катушек намотанных проводом 1 мм по 100 витков, должен выдавать на аккумулятор при 300об/м 3,3А. Чтобы узнать мощность отдаваемую генератором в аккумулятор достаточно напряжение аккумулятора умножить на силу тока поступающую в него. В данном случае умножаем 12 вольт на 3,3 Ампера, получается что на практике генератор на 300об/м будет выдавать 40 ватт/ч.

Так как напряжение правильно собранного генератора для ветрогенератора растет пропорционально оборотам, то можно посчитать отдачу генератора на более высоких оборотах.

300об/м 18-12:1.8= 3,3 Ампер на аккумулятор 12*3,3= 39,6 Ватт.

450об/м 27-12:1,8= 8,3 Ампер на аккумулятор 12*8,3= 99,6 Ватт

600об/м 36-12:1.8= 13,3 Ампер на аккумулятор 12*13,3= 159,6 Ватт

750об/м 45-12:1,8= 38,3 Ампер на аккумулятор 12*38,3= 459,6 Ватт

Есть ещё и другая формула E=BLV, где
В – индукция в зазоре
L – длинна проводника на который действует магнитное поле
V – скорость движения магнитного поля относительно проводника.

Несколько моментов о правильности сборки аксиального генератора для ветряка
Диски под магниты должны быть равны толщине магнитов, можно толще, но тоньше нет, так-как магнитное поле магнитов замыкается через железо, подпитывая магниты, тем самым усиливая передачу магнитного потока к магнитам стоящим на дисках напротив друг друга. Если сделать диски тоньше, то часть магнитного потока будет рассеиваться. Если к обратной стороне диска ничего не магнитится, можно проверить иголкой, то значит все хорошо.

Расстояние на дисках между магнитами должно быть равно половине ширины магнита, можно больше, но если меньше, то часть магнитного поля будет замыкаться на соседние магниты и не пойдет к противоположным магнитам через катушки.

Толщина статора с катушками должна быть не толще магнитов, если толще то из-за большого расстояния между магнитами магнитное поле сильно рассеивается и не все идет к магнитам, которые на дисках на против друг друга. Магниты нужно на дисках наклеивать с чередованием полюсов, а диски должны притягиваться, то-есть магниты стоящие друг на против друга должны притягиваться.
Лента под катушки нужна 20 мм по высоте, а по ширине она равна диаметру магнита, или чуть больше, 2-3 мм.
Для однофазного генератора количество катушек должно быть равно количеству магнитных полюсов ротора, то-есть если у вас по 12 магнитов на каждом диске, то и катушек должно быть 12. Катушки соединяются последовательно, конец первой с концом второй,а начало второй с началом третьей, конец третьей с концом четвертой и так далее. Но однофазный генератор я не рекомендую вам делать, во-первых вибрация под нагрузкой, которая предается по мачте и слышно гудение при работе особенно на сильном ветре, и другие неприятные мелочи, о которых долго рассказывать.

Трехфазный генератор для ветряка делают с соотношением 2/3 или 4/3 где число магнитов/число катушек. К примеру если делать 12 полюсов ( магнитов на дисках), то можно делать как 9 катушек, по три на фазу, так и 18 катушек по 6 на фазу. Катушки фаз соединяются последовательно, или если 20 полюсов, то 15 катушек, по 5 на фазу.

Как произвести расчет ветрогенератора: формулы + практический пример расчета

Альтернативная энергия, получаемая от энергетических ветряных установок, вызывает в обществе высокий интерес. Подтверждений тому на уровне реальной бытовой практики множество.

Владельцы загородной недвижимости строят ветряки собственными руками и довольствуются полученным результатом, хотя эффект бывает и кратковременным. Причина – при сборке не был произведён расчёт ветрогенератора должным образом.

Согласитесь, не хотелось бы потратив время и средства на реализацию проекта, получить малоэффективную установку. Поэтому важно понять, как произвести расчет ветрогенератора, и по каким параметрам подобрать основные рабочие узлы ветряка.

Решению этих вопросов и посвящена статья. Теоретическая часть материала дополнена наглядными примерами и практичными рекомендациями по сборке ветрогенераторной установки.

Расчёт ветрогенераторной установки

С чего начать рассчитывать систему воспроизводства электроэнергии из энергии ветра? Учитывая, что речь идёт о ветрогенераторе, логичным видится предварительный анализ розы ветров в конкретной местности.

Такие расчётные параметры, как скорость ветра и характерное его направление для данной территории – это важные расчётные параметры. Ими в какой-то степени определяется тот уровень мощности ветряка, который будет реально достижим.

Что примечательно, процесс этот носит долговременный характер (не менее 1 месяца), что вполне очевидно. Вычислить максимально вероятные параметры скорости ветра и его наиболее частое направление невозможно одним или двумя замерами.

Потребуется выполнить десятки замеров. Тем не менее, операция эта действительно необходима, если есть желание построить эффективную производительную систему.

Как вычислить мощность ветряка

Ветрогенераторам бытового назначения, тем более сделанным своими руками, удивлять народ высокими мощностями ещё не приходилось. Оно и понятно. Стоит лишь представить массивную мачту высотой 8-10 м, оснащённую генератором с размахом лопастей винта более 3 м. И это не самая мощная установка. Всего-то около 2 кВт.

Вообще, если опираться на стандартную таблицу, показывающую соотношение мощности ветрогенератора и требуемого размаха лопастей винта, есть чему удивиться. Согласно таблице, для ветряка мощностью 10 Вт необходим двухметровый пропеллер.

На 500-ваттную конструкцию потребуется уже винт диаметром 14 м. При этом параметр размаха лопастей зависит от их количества. Чем больше лопастей, тем меньше размах.

Но это всего лишь теория, обусловленная скоростью ветра, не превышающей значения 4 м/сек. На практике всё несколько иначе, а мощность установок бытового назначения, реально действующих продолжительное время, ещё никогда не превышала 500 Вт.

Поэтому выбор мощности здесь обычно ограничен диапазоном 250-500 Вт при средней скорости ветра 6-8 м/сек.

С теоретической позиции, мощность ветряной энергетической станции считают по формуле:

N=p*S*V 3 /2,

  • p – плотность воздушных масс;
  • S – общая обдуваемая площадь лопастей винта;
  • V – скорость воздушного потока;
  • N – мощность потока воздуха.

Так как N – параметр, кардинально влияющий на мощность ветрогенератора, то реальная мощность установки будет находиться недалеко от вычисленного значения N.

Расчёт винтов ветряных установок

При конструировании ветряка обычно применяются два вида винтов:

  • крыльчатые – вращение в горизонтальной плоскости;
  • ротор Савониуса, ротор Дарье – вращение в вертикальной плоскости.

Конструкции винтов с вращением в любой из плоскостей можно рассчитать при помощи формулы:

Z= L*W/60/V

  • Z – степень быстроходности (тихоходности) винта;
  • L – размер длины описываемой лопастями окружности;
  • W – скорость (частота) вращения винта;
  • V – скорость потока воздуха.

Отталкиваясь от этой формулы, можно легко рассчитать число оборотов W – скорость вращения.

А рабочее соотношение оборотов и скорости ветра можно найти в таблицах, которые доступны в сети. Например, для винта с двумя лопастями и Z=5, справедливо следующее соотношение:

Число лопастейСтепень быстроходностиСкорость ветра м/с
25330

Также одним из важных показателей винта ветряка является шаг.

Этот параметр можно определить, если воспользоваться формулой:

H=2πR* tg α,

  • – константа (2*3.14);
  • R – радиус, описываемый лопастью;
  • tg α – угол сечения.

Дополнительная информация о выборе формы и количества лопастей, а также инструкция по их изготовлению приведена в этой статье.

Подбор генераторов для ветряков

Имея расчётное значение числа оборотов винта (W), полученное по вышеописанной методике, можно уже подбирать (изготавливать) соответствующий генератор.

Например, при степени быстроходности Z=5, количестве лопастей равном 2 и частоте оборотов 330 об/мин. При скорости ветра 8 м/с. мощность генератора приблизительно должна составлять 300 Вт.

При таких параметрах подходящим выбором в качестве генератора для бытовой ветряной электростанции может стать мотор, который используется в конструкциях современных электровелосипедов. Традиционное наименование детали – веломотор (производство КНР).

Характеристики электрического веломотора примерно следующие:

ПараметрЗначения
Напряжение, В24
Мощность, Вт250-300
Частота вращения, об/мин.200-250
Крутящий момент, Нм25

Положительная особенность веломоторов в том, что их практически не нужно переделывать. Они конструктивно разрабатывались как электродвигатели с низкими оборотами и успешно могут применяться под ветрогенераторы.

Расчёт и выбор контроллера заряда

Контроллер заряда АКБ необходим для ветряной энергетической установки любого типа, включая бытовую конструкцию.

Расчёт этого устройства сводится к подбору электрической схемы прибора, которая бы соответствовала расчётным параметрам ветровой системы.

Из тих параметров основными являются:

  • номинальное и максимальное напряжение генератора;
  • максимально возможная мощность генератора;
  • максимально возможный ток заряда АКБ;
  • напряжение на АКБ;
  • температура окружающего воздуха;
  • уровень влажности окружающей среды.

Исходя из представленных параметров, ведётся сборка контроллера заряда своими руками или подбор готового устройства.

Конечно, желательно подбирать (или собирать) устройство, схема которого обеспечивала бы функцию лёгкого старта в условиях течения слабых потоков воздуха. Контроллер, рассчитанный под эксплуатацию с батареями разного напряжения (12, 24, 48 вольт) тоже лишь приветствуется.

Наконец, при расчёте (подборе) схемы контроллера, рекомендуется не забывать о присутствии такой функции, как управление инвертором.

Подбор аккумуляторной батареи для системы

На практике используются аккумуляторы разного типа и почти все вполне пригодны для использования в составе ветряной энергетической системы. Но конкретный выбор придётся делать в любом случае. В зависимости от параметров системы ветряка, подбор аккумулятора ведётся по напряжению, ёмкости, условиям заряда.

Традиционными комплектующими для домашних ветряков считаются классические кислотно-свинцовые аккумуляторы. Они показали неплохие результаты в практическом смысле. К тому же стоимость этого типа батарей более приемлема по сравнению с другими видами.

Читайте также:  Реле времени с задержкой выключения: использование в сети 220 В, характеристики таймеров и их применение

Свинцово-кислотные АКБ особо неприхотливы к условиям заряда/разряда, но включать их в систему без контроллера недопустимо.

При наличии в составе ветрогенераторной установи профессионально выполненного контроллера заряда, имеющего полноценную систему автоматики, рациональным видится применение аккумуляторов типа AGM или гелиевых.

Оба вида накопителей энергии характеризуются большей эффективностью и долгим сроком службы, но предъявляют высокие требования к условиям заряда.

То же самое относится к так называемым панцирным АКБ гелиевого типа. Но выбор этих аккумуляторов для бытового ветряка значительно ограничивается ценой. Однако срок службы этих дорогостоящих батарей самый продолжительный по отношению ко всем другим видам.

Эти аккумуляторы выделяются также более значительным циклом заряда/разряда, но при условии применения к ним качественного зарядного устройства.

Расчёт инвертора под домашний ветряк

Сразу следует оговориться: если конструкция домашней энергетической ветроустановки содержит один аккумулятор на 12 вольт, смысл ставить инвертор на такую систему полностью исключается.

В среднем потребляемая мощность бытового хозяйства составляет не менее 4 кВт на пиковых нагрузках. Отсюда вывод: количество аккумуляторных батарей для такой мощности должно составлять не менее 10 штук и желательно под напряжение 24 вольта. На такое количество АКБ уже есть смысл устанавливать инвертор.

Однако чтобы обеспечить полностью энергией 10 аккумуляторов с напряжением по 24 Вт на каждый и стабильно поддерживать их заряд, потребуется ветряк мощностью не менее 2-3 кВт. Очевидно, для бытовых простеньких конструкций такую мощность не потянуть.

Тем не менее, рассчитать мощность инвертора можно следующим образом:

  1. Суммировать мощность всех потребителей.
  2. Определить время потребления.
  3. Определить пиковую нагрузку.

На конкретном примере это будет выглядеть так.

Пусть в качестве нагрузки есть бытовые электроприборы: лампы освещения – 3 шт. по 40 Вт, телевизионный приёмник – 120 Вт, компактный холодильник 200 Вт. Суммируем мощность: 3*40+120+200 и получаем на выходе 440 Вт.

Определим мощность потребителей для среднего периода времени в 4 часа: 440*4=1760 Вт. Исходя из полученного значения мощности по времени потребления, логичным видится подбор инвертора из числа таких приборов с выходной мощностью от 2 кВт.

Опираясь на это значение, рассчитывается вольт-амперная характеристика требуемого прибора: 2000*0,6=1200 В/А.

Реально нагрузка от домашнего хозяйства на семью в три человека, где имеется полноценное оснащение бытовой техникой, будет выше рассчитанной в примере. Обычно и по времени подключения нагрузки параметр превышает взятые 4 часа. Соответственно, инвертор ветряной энергосистемы потребуется более мощный.

Предварительный расчет ветряка пригодится не только для его самостоятельной сборки. Определиться с оптимальными параметрами необходимо и при выборе готового ветрогенератора.

Выводы и полезное видео по теме

Как происходит анализ исходных данных и как применяются формулы, представлено на видео:

Пользоваться расчётными данными необходимо в любом случае. Будь то промышленная энергетическая установка или изготовленная под бытовые условия, расчёт каждого узла всегда несёт за собой максимум эффективности устройства и главное – безопасность эксплуатации.

Предварительно выполненные расчёты определяют целесообразность реализации проекта, помогают установить, насколько затратным или экономным получается проект.

Имеете опыт в решении подобных задач? Или остались вопросы по теме? Пожалуйста, поделитесь своими навыками расчета и проектирования ветрогенератора. Оставлять комментарии и задавать вопросы можно в форме, расположенной ниже.

Правильный расчет ветрогенератора: что нужно учитывать при подсчете мощности ветроколеса?

Обновлено: 9 января 2021

  • Важный нюанс при покупке ветряка
  • Расчет мощности ветрогенератора
    • Как произвести?
    • Что нужно учитывать?
  • Реальная мощность самодельного ветрогенератора
  • Расчет параметров ветроколеса
    • Сколько экономии энергии дает ветряк?
    • Сколько электроэнергии вырабатывает?
    • Минимальная скорость ветра для ветряка
  • Рекомендуемые товары

Важный нюанс при покупке ветряка

Прежде чем приобрести или изготовить ветрогенератор, необходимо определиться с его мощностью, собственной потребностью в энергии и прочих параметрах устройства. Это принципиально важно при покупке ветряка, так как цены настолько велики, что приходится покупать устройство, которое пользователь сможет осилить по финансам. В некоторых случаях возможности оказываются настолько низкими, что приобретение уже не имеет смысла.

Расчет мощности ветрогенератора

Самостоятельное изготовление ветряка также нуждается в предварительном расчете. Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.

Произвести точный расчет с учетом всех факторов, воздействующих на ветряк, достаточно сложно. Для неподготовленных в теоретическом отношении мастеров такой расчет слишком сложен, он требует обладания множеством данных, недоступных без специальных измерений или расчетов.

Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.

Как произвести?

Для расчета ветрогенератора надо произвести следующие действия:

  • определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
  • полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
  • зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач. От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
  • расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока

Для примера рассмотрим расчет простого варианта. Формула выглядит следующим образом:

Где P — мощность потока.

K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.

R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м 3 .

V — скорость ветра.

S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).

Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с

P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт

Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.

Что нужно учитывать?

При расчете ветряка следует учитывать особенности конструкции ротора. Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

Сооружение мачты может обойтись в большую сумму денег и значительные вложения труда. Кроме того, обслуживание ветряка, расположенного на высоте около 10 м над поверхностью земли чрезвычайно сложно и опасно.

Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.

Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.

Реальная мощность самодельного ветрогенератора

Особенностью самодельных устройств является использование подручных материалов и устройств. В таких условиях обеспечить полноценное соответствие проектным данным не всегда удается. При этом, разница в расчетных и реальных показателях может оказаться как отрицательной, так и положительной.

Величины, определяющие возможности комплекта, это мощность ветроколеса и генератора. Насколько они будут соответствовать друг другу, такая и общая мощность ветрогенератора будет получена в результате.

Например, если генератору для номинальной производительности требуется скорость вращения в 2000 об/мин, то никакое ветроколесо не сможет обеспечить нужные значения.

Поэтому прежде всего следует подбирать тихоходные образцы генераторов, способные на выработку больших количеств энергии при низких скоростях вращения. Для этого модернизируются готовые устройства (например, устанавливаются неодимовые магниты на ротор автомобильных генераторов), изготавливаются собственные конструкции на базе тех же неодимовых магнитов с заранее подсчитанной мощностью и производительностью.

Расчет параметров ветроколеса

Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д.

Следует учитывать, что увеличение количества лопастей снижает скорость вращения, но увеличивает мощность вращательного движения. Соответственно, малое число лопастей надо применять на быстроходных генераторах, а большое количество —торах, нуждающихся в большом усилии вращения.

Формула быстроходности ветроколеса выглядит следующим образом:

Где Z — искомая величина (быстроходность),

L — длина окружности, описываемой лопастями.

W — частота (скорость) вращения крыльчатки.

V — скорость ветра.

Специалисты рекомендуют для самостоятельного изготовления выбирать многолопастные образцы с количеством лопастей от 5 штук. Они не требовательны к балансировке, имеют более стабильную аэродинамику и более активно принимают на себя энергию воздушного потока.

Сколько экономии энергии дает ветряк?

Величина экономии, полученной от использования ветрогенератора, рассчитывается по собственным данным. Она складывается, с одной стороны из расходов на приобретение и сборку ветряка или его деталей, расходов на обслуживание комплекта. С другой стороны, учитывается стоимость сетевой электроэнергии в данном регионе, либо цена подключения и прочие расходы, связанные с этим.

Разница полученных величин и будет являться величиной экономии. Необходимо учесть также отсутствие возможности для подключения в некоторых районах, когда ветрогенератор становится единственным доступным вариантом. В таких случаях разговор об экономии становится неуместным.

Сколько электроэнергии вырабатывает?

Количество вырабатываемой энергии зависит от параметров крыльчатки и собственно генератора. Максимально возможным количеством следует считать номинальные данные генератора, уменьшенные на величину КИЭВ крыльчатки. На практике показатели намного ниже, так как в получении результата большое значение имеет скорость ветра, которую невозможно заранее предсказать.

Кроме того, имеются различные тонкие эффекты, в сумме оказывающие заметное влияние на конечную производительность ветряка. Принципиально важными значениями являются диаметр крыльчатки и скорость ветра, от них напрямую зависит количество полученной энергии.

Минимальная скорость ветра для ветряка

Минимальная скорость ветра — в данном случае это величина, при которой лопасти ветряка начинают вращаться. Это значение показывает степень чувствительности крыльчатки, но на конечный результат влияет слабо. Генератор имеет собственные потребности, для него само по себе вращение еще не решает все вопросы.

Требуется определенная скорость и стабильность движения, отсутствие резких рывков. Рассматривать минимальную скорость вращения следует только с позиций общей эффективности рабочего колеса, позволяющей оценивать его способность обеспечить выработку энергии на слабых потоках.

Ветрогенератор своими руками: расчет винта и генератора переменного тока

Продолжая тему, посвященную ветроэнергетике в домашнем хозяйстве, считаем своим долгом рассказать о конструкции ветрогенератора – ключевого элемента системы. Статья ориентирована на тех, кто планирует собирать «сердце» ветроэнергетической установки своими руками.

Судя по опыту пользователей FORUMHOUSE, которые не привыкли искать легких путей, сборка ветрогенератора своими силами – задача, вполне осуществимая. И первое, что необходимо выполнить для ее успешной реализации – это правильно рассчитать основные элементы установки.

Для того чтобы основные моменты, представленные в настоящей статье, были вам понятны, рекомендуем ознакомиться с материалами, изложенными в ее первой и второй частях.

Из статьи вы узнаете:

  • Как правильно рассчитывать рабочий винт ветрогенератора.
  • Какие типы генераторов больше всего подходят для сборки в домашних условиях.
  • Как рассчитывать рабочие характеристики генератора переменного тока.

Расчет рабочего винта (ветроколеса)

Преобразование механической энергии воздушного потока в энергию электрическую начинается с рабочего винта. Поэтому методику расчета ветроколеса мы рассмотрим в первую очередь. Сделаем это на примере наиболее распространенного трехлопастного винта с горизонтальной осью вращения.

Ключевое правило, которого следует придерживаться, осуществляя расчет ветряка, заключается в следующем: мощность ветрового потока, которую можно снять с рабочих лопастей устройства, должна соответствовать электрической мощности самого генератора. Объясним почему: если мощность винта будет слишком малой, то даже при сильном ветре винт не сможет стронуть с места ротор генератора, находящегося под нагрузкой. Если же, наоборот, винт окажется слишком мощным для генератора, то при сильном ветре он раскрутит ротор до очень высоких оборотов, что неизбежно приведет к разрушению всей установки.

Учитывая этот момент, рассмотрим порядок расчета трехлопастного винта в соответствии с заданными характеристиками генератора. Предположим, что у вас уже есть генератор, с номинальной мощностью 300 Вт*ч (к примеру). Также представим, что свои номинальные характеристики устройство будет демонстрировать при оборотах ротора – 150 об/мин. Если средняя скорость ветра в вашей местности составляет 6 м/сек, то на нее и следует ориентироваться, осуществляя дальнейшие расчеты.

Читайте также:  Расчет количества керамзитобетонных блоков в 1 м3

Далее: генератор переменного тока, на который ветроколесо передает вращательный момент, имеет свой собственный КПД (0,6…0,8). При различных условиях эксплуатации данный показатель может опускаться до более низких значений, поэтому в качестве примера возьмем КПД, равный 50%.

Для того чтобы устройство, обладающее подобным КПД, выдало необходимые 300 Вт*ч электрической мощности, на его ротор необходимо подать мощность, в два раза превышающую ту, которую требуется с него снять. То есть, механическая мощность, передаваемая на генератор с ветроколеса, должна быть равна 600 Вт.

Средний КИЭВ (коэффициент использования энергии ветра) у трехлопастных винтов равен 0,4 (это и будет КПД ветроколеса). Следовательно, мощность ветра (Х), которая должна воздействовать на рабочие лопасти ветряка (чтобы снять с них 600 Вт), можно вычислить, решив уравнение:

Х = 600:0,4 = 1500 Ватт.

Итак, количество необходимой энергии нам известно, теперь рассчитаем площадь, ометаемую рабочими лопастями ветроколеса (S).

Вот нашел формулу: P = 0,5 *Q * S * V³ * Cp * Ng

  • P – мощность (Вт);
  • Q – плотность воздуха (1,23 кг/м³);
  • S – площадь ометания ветроколеса (м²);
  • V – скорость ветра (м/с);
  • CP – коэффициент использования энергии ветра (0,35…0,45);
  • Ng – КПД генератора;

Плотность воздуха – неизменна, площадь ометания ротора – тоже.

Эта формула обозначает мощность на выходных клеммах генератора. Учитывая, что значение мощности (1500 Вт) мы изначально взяли с учетом КИЭВ ветроколеса и КПД генератора, последние два значения из формулы убираем.

Мощность ветра, которую воздушный поток передает на ветроколесо, будет равна:

P = 0,5 *Q * S * V³

Все значения, входящие в формулу, нам известны (кроме площади – S). Решив простейшее уравнение, получим:

S = 1500/0,5*1,23*6³ = 11,292 м²

Площадь круга вычисляется по формуле:

S = πr²

где π – математическая константа (3,14), а r² – квадрат радиуса окружности ветроколеса.

В нашем случае r² = 11,292/3,14 = 3,596.

Следовательно, радиус ветроколеса будет равен 1,89 м, а его диаметр – 3,78 м.

Теперь необходимо удостовериться в том, что такое ветроколесо сможет при ветре – 6 м/с развить достаточное количество оборотов. В этом нам поможет коэффициент быстроходности ветряка – Z (у трехлопастных устройств Z=5).

Окружная (концевая) скорость лопастей ветряка с коэффициентом быстроходности Z5 будет равна произведению коэффициента (Z) на скорость ветра (6*5=30 м/с). Периметр ветроколеса диаметром 3,78 метра равен 11,87 м (L=2πr). Это длина его окружности по внешнему диаметру лопастей, то есть, расстояние, которое конец каждой лопасти проходит за один оборот. Следовательно, за секунду каждая лопасть сделает 2,53 оборота (30 м/с делим на 11,87 м) или 151 оборот за минуту. Что нам и требовалось.

Для того чтобы увеличить обороты, мы можем уменьшить диаметр ветроколеса, но мощность винта в этом случае снизится.

Уменьшение диаметра ветроколеса должно давать увеличение оборотов. Его можно уменьшать до тех пор, пока мощности винта будет хватать для прокручивания генератора под нагрузкой. Это и будут оптимальные параметры.

Мы представили вашему вниманию методику «грубого» расчета ветроколеса, основанную на характеристиках генератора и существующих потребностях в альтернативной электроэнергии.

Учитывая, что большой ветряк и построить сложно, и обслуживать – непросто, конструкцию рабочего винта можно рассчитать под конкретные условия эксплуатации (добавляя или уменьшая количество лопастей, а также меняя при этом их длину). Это поможет изменить коэффициент быстроходности, а, следовательно, и количество оборотов. Также при недостаточном количестве оборотов мощные ветрогенераторы (особенно многолопастные – тихоходные) оснащаются дополнительным редуктором-мультипликатором.

При малых скоростях вращения ротора выработки электроэнергии нет вообще. Мультипликатор решает эту проблему даже при малых оборотах.

Как бы мастер ни старался, самодельный ветрогенератор всегда будет далек от совершенства: самодельные лопасти, самодельные катушки – при изготовлении всего этого трудно соблюсти рекомендуемые аэродинамические и электротехнические параметры. И если в теории мы рассчитали, что ветроколесо диаметром 3,78 метра (при ветре 6 м/с) позволит получить нам 300 Вт*ч электроэнергии, на практике этот показатель можно смело уменьшить на 30%. Этим самым мы на стадии расчетов учтем недостатки кустарной сборки и возможные потери мощности.

Расчет генератора

Рассмотрим последовательность расчета трехфазного генератора переменного тока на постоянных магнитах. Трехфазные генераторы получили значительно более широкое распространение (нежели однофазные) за счет своих характеристик: отсутствие сильных вибраций и гула во время работы, улучшенные характеристики по мощности, току и т. д.

Мощность генератора зависит от целого ряда факторов: скорость вращения, величина магнитной индукции, количество витков на обмотках статора и т. д. Также она напрямую зависит от величины ЭДС генератора, которая определяется по формуле:

E=B•V•L

  • E – ЭДС (В);
  • B – величина магнитной индукции (Тс);
  • V – линейная скорость движения магнитов (м/с) – произведение длины окружности ротора на количество оборотов;
  • L – активная длина проводника (м), которую перекрывают магниты генератора.

Среднее значение индукции постоянных магнитов, используемых в составе генераторов переменного тока, равно 0.8 Тл. Его можно смело применять во время осуществления предварительных расчетов.

Рассмотрим последовательность предварительного расчета трехфазного аксиального генератора, пользуясь примером, который предложил один из пользователей FORUMHOUSE.

Вот, что я имею: 24 магнита (неодимовые) толщиной – 5 мм, шириной – 9.5 мм, длиной – 20 мм. Имею среднегодовую скорость ветра – 5 м/сек. Планирую сделать два ротора – по 12 магнитов на роторе (то есть – 12 полюсов). Соотношение полюсов и катушек – 2/3 (на каждые 2 полюса идет 3 катушки). Получаем 12 полюсов и 18 катушек (по 12 магнитов на каждом диске ротора). Ветроколесо выбрал диаметром 2 метра (двухлопастное). Его быстроходность – Z7. При ветре 5 м/с ветряк должен развивать 334 об/мин (334/60= 5,6 об/сек).

Пользователя интересовал расчет дискового генератора аксиального типа.

Преимущества аксиальных генераторов заключаются в отсутствии магнитного залипания, что позволяет им стартовать при сравнительно небольшой скорости ветра (около 2-х м/с). Основной их недостаток, в сравнении с классическими самодельными моделями, заключается в том, что для получения одинаковой мощности на сборку аксиального генератора необходимо потратить, как минимум, в 2 раза больше магнитов.

Под классическими моделями подразумеваются устройства, изготовленные из асинхронного двигателя или из стандартного автомобильного генератора.

Ветряк для частного дома — деньги на ветер. Весь расклад по цифрам в рублях и киловаттах.

Вопрос ветроэнергетики в наше инновационное время интересует очень многих. Те, кто хоть раз посещал Европейские страны на своем авто, наверняка видели огромные ветропарки.
Сотни генераторов встречаются по пути.

Наблюдая такую картину, многие начинают верить, что получение эл.энергии при помощи ветра, весьма перспективное и выгодное занятие. Мудрые европейцы ошибаться то не могут.

Наверняка после очередного подорожания электроэнергии, вы задумывались об установке у себя на участке ветрогенератора. Тем самым, обеспечив если не всю, то большую часть своих потребностей в электричестве.

Некоторые даже подумывают таким образом стать независимыми от электросетей. Насколько это реально и возможно? К сожалению, для 90% владельцев частных домов, эти мечты так и останутся мечтами.

К сожалению, в нашей стране не так много регионов, где скорость ветра находится хотя бы на уровне 5-7 метров в секунду. Берутся данные в среднем за год. В подавляющем большинстве широт, пригодных для проживания, эта самая скорость равняется максимум 2-4 м/с.

Это говорит о том, что ваша ветроустановка большую часть времени, элементарно не будет работать. Для стабильной выработки электричества, ей нужен ветер около 10 м/с.

Фактически за час, 2квт генератор подарит вам не более 100Вт.

Еще вы столкнетесь с другой проблемой ветра, о которой умалчивают производители. Около земли, его скорость гораздо меньше чем наверху, там где ставятся промышленные установки высотой 25-30м.

Вы же свой агрегат будете монтировать максимум на десяти метрах. Поэтому даже не ориентируйтесь на таблицы ветров с разных сайтов. Эти данные вам не подходят.

Производители скромно умалчивают, что для их карт ветроресурсов, замеры производятся на высоте от 50 до 70 метров! К тому же там не учтены данные по турбулентности, завихрениям.

Попробуете задрать повыше чем 10м, обязательно задумаетесь о молниезащите. Наэлектризованные трением воздуха лопасти, очень вкусная приманка для разрядов!

К тому же, почему-то все беспокоятся только о таком параметре, как скорость ветра, и при этом забывают про его плотность или давление. А разница для энергетики весьма существенная. Зависимость выработки электроэнергии от давления ветра непропорциональная.

Кроме того, есть определенное лукавство в указанных технических характеристиках генераторов.

Верить им конечно можно, но только для идеальных условий. Потому что:

    показания эти снимаются в аэротрубе
    и в ламинарном потоке при неизменном направлении и повышенной плотности

У вас же на дачном участке скорость ветра может быть такой, что не получится и вал прокрутить, не то что вырабатывать энергию.

И это весной или осенью. Именно в этот период происходят наиболее активные перемещения воздушных масс.

Не забывайте, что ветряк работает не в режиме холостого хода вертушки, а должен раскрутить ротор генератора в окружении неодимовых магнитов.

И это только до тех пор, пока электрический потенциал ветряка ниже напряжения АКБ. При достижении напряжения достаточного для начала заряда, аккумулятор превращается в нагрузку.

Если применить тихоходные конструкции с вертикальной осью вращения, то здесь уже присутствует повышающий редуктор. Вы пытались раскрутить повышающий редуктор? Такая конструкция усложняется, увеличивается вес, парусность, стоимость.

Даже на маяках Северного флота, учитывая там постоянные ветра и полярную ночь, специалисты предпочитают использовать солнечные батареи. На вопрос почему так, отвечают по-простому – проблем меньше!

Большие промышленные ветротурбины могут передавать энергию напрямую в сеть, минуя всякие аккумуляторы.

А вот вы без них обойтись никак не сможете. Без АКБ не будет работать ни телевизор, ни холодильник. Даже освещение будет светить урывками, в зависимости от порывов ветра.

При этом за 12-15 лет работы генератора, вы обязаны будете сменить 3-4 комплекта АКБ, тем самым вдвое увеличив свои начальные расходы. Причем мы берем чуть ли не идеальный вариант, когда аккумуляторы будут разряжаться не больше половины от своей емкости.

Конечно вы можете купить дешевые модели АКБ, но затраты от этого не станут меньше. Просто поход в магазин за новыми батареями будет осуществлен не 4 раза, а уже 8.

Еще о чем стоит серьезно задуматься – это наличие свободного места. Причем по площади оно может уходить на 100 и более метров в каждую сторону от мачты.

Ветер должен свободно гулять по лопастям, и без помех их достигать со всех сторон. Получается, что вы должны проживать либо в степи, либо возле моря (лучше непосредственно на его берегу).

Идеальное место будет на вершине холма. Где с позиции аэродинамики, воздушный поток уплотняется с соответствующим увеличением скорости и давления ветра.

О соседях рядом забудьте. Их сады и двух-трехэтажные особняки, здорово “попьют вашу кровушку”, каждый раз перекрывая попутный ветерок. Также как и соседние лесопосадки.

Те же самые промышленные ветряки, не располагают непосредственно друг за другом, а монтируют их по диагонали. Каждый последующий, не должен закрывать предыдущий.

4-я причина – высокая цена. Не ведитесь на цены продавцов в прайс листах. В них никогда не показывается реальная стоимость всего необходимого оборудования.
Поэтому цены всегда умножайте на 2, даже при выборе так называемых готовых комплектов.

Но и это еще не все. Не забудьте про эксплуатационные расходы, доходящие до 70% от стоимости ветряков. Попробуйте поремонтировать генератор на высоте, либо каждый раз демонтировать и разбирать-собирать мачту.

Еще не забудьте про периодическую замену АКБ. Поэтому не рассчитывайте, что ветряк может вам обойтись в 1 доллар за 1квт эл.энергии.

Когда вы посчитаете все реальные затраты, окажется что каждый киловатт мощности такого ветрогенератора, обошелся вам минимум в 5 баксов.

Пятая причина, неразрывно связана с первыми четырьмя. Это срок окупаемости затрат.

Стоимость ветряка, мачты и доп.оборудования для 2-х киловаттных качественных моделей будет доходить в среднем до 200 тыс. рублей. Производительность таких установок – от 100 до 200квт в месяц, не более. И это при хороших погодных условиях.

Даже осадки снижают мощность ветряков. Дождь на 20%, снег – на 30%.

Вот и получается вся ваша экономия – это 500 рублей. За 12 месяцев непрерывной работы, набежит уже чуть больше – 6 тысяч.

Читайте также:  Светодиоды SMD 3528 и их характеристики

При этом, 2-х киловаттный агрегат не будет закрывать на 100% ваши потребности. Максимум на треть! Если захотите целиком все подключить от него, то берите 10-ти киловаттную модель, не меньше. Срок окупаемости от этого не изменится.

Но тут уже будут совсем другие габариты и масса.

И закрепить его просто так на трубе через чердак своей крыши, точно не получится.

Однако некоторые все равно убеждены, что из-за бесконечного подорожания электроэнергии, ветрогенератор в один прекрасный момент, по любому станет выгоден.

Безусловно, электроэнергия с каждым годом дорожает. К примеру 10 лет назад, ее цена была на 70% ниже. Давайте проведем примерные расчеты и выясним перспективу выхода на окупаемость ветряка, с учетом резкого удорожания электричества.

Рассматривать будем генератор мощностью 2квт.

Как мы уже выяснили ранее, стоимость такой модели около 200тысяч. Но с учетом всех доп.расходов, нужно умножить ее на два. Получится минимум 400 тыс.руб. затрат, при сроке службы в двадцать лет.

То есть, за год получается 20 тысяч. При этом по факту, за этот год агрегат выдаст вам максимум 900 квт. Из-за коэфф. установленной мощности (он для маленьких ветряков не превышает пяти процентов), за месяц вы накрутите 75квт.

Даже если взять 1000 квт в год для простоты расчетов, стоимость 1квт/ч полученная от ветряка, для вас составит 20 рублей. Если и предположить что электричество от ТЭС подорожает в 4 раза, то случится такое не завтра, и даже не через 5 лет.

Какие выводы можно сделать из всего вышесказанного?

Ветрогенератор в нынешних российских условиях – это убыточный агрегат.

Чтобы хоть как-то обосновать его применение, цена электроэнергии уже сегодня должна доходить до 30 рублей за 1 квт.

Использование ветряка может быть обосновано в двух случаях:

    у вас поблизости нет внешних электросетей или вам не дают к ним подключаться
    у вас есть дизель генератор, но доставить для него топливо нет возможности

При этом, устанавливаться ветряк должен в районе со средне годовой скоростью ветра не менее 5-6 м/с. Только в этих случаях ветроустановка будет хорошей альтернативой.

Фактически, в таких условиях вы просто вынуждены выбрать из всех зол наименьшее. При этом, не верьте в суперэффективность других моделей вертикальной или шарообразной формы, собранных на неодимовых магнитах.

Конечный результат будет всегда один. Энергия, которую производит ветряк, зависит только от:

    скорости ветра
    площади, которую описывают лопасти

Поэтому, если вы уже подключены к электросети, не ищите себе лишних приключений и головных болей. Выгоды никакой вы не найдете, по крайне мере на сегодняшний день.

Ну а тем, кто живет далеко от подстанций и ВЛ-0,4кв, стоит приобретать наиболее мощные модели ветряков, какие вы только можете себе позволить. Так как от той мощности, что указана на картинках, вам достанется не более 15%.

Другая категория потребителей, вполне заслужено делает выбор не в пользу китайских заводских моделей, а наоборот, предпочитает самодельные ветряки от мастеров самоучек. Свои выгоды в этом тоже имеются.

В большинстве своем, изобретатели подобных девайсов, это грамотные и ответственные ребята. И практически в 100% случаев, без проблем им можно вернуть установку, если что-то пошло не так, или ее нужно подремонтировать. С этим проблем уж точно не будет.

У промышленных китайский ветряков, внешний вид конечно посимпатичнее. И если вы все-таки решились прикупить именно его, сразу после проверки электродрелью, сделайте профилактический ремонт и замените китайский металлолом на подшипники с качественной смазкой.

Если поблизости от вас есть крупные гнездовья птиц, не помешает закупить дополнительный комплект лопастей.

Птенцы иногда попадают под раздачу крутящейся “мини мельницы”. Пластиковые лопасти ломаются, а металлические гнутся.

А закончить хотелось бы мудростью от тех пользователей, которые не послушались всех доводов и вплотную столкнулись со всеми вышеописанными проблемами. Запомните, самый дорогой флюгер для дома – это ветрогенератор!

Бытовой ремонт №1

Выберите надежных мастеров без посредников и сэкономьте до 40%!

  1. Заполните заявку
  2. Получите предложения с ценами от мастеров
  3. Выберите исполнителей по цене и отзывам

Разместите задание и узнайте цены

  • Ремонт квартир
  • Статьи
  • Электрика

Ветрогенераторы как источник электроэнергии не так давно завоевали популярность у жителей загородных участков. Перед установкой необходимо сделать расчет ветрогенератора для своей местности. Этот экологически чистый прибор для выработки электричества бывает двух видов:

  • с горизонтальной осью
  • с вертикальной осью

Последние более эффективны и технологичны. Единственным минусом вертикальных ветрогенераторов является их высокая цена. Часто такие приборы окупаются в течение пятнадцати лет. Поэтому ветрогенераторы используют как дополнительный источник энергии. Установить их можно своими руками.

Как выбрать ветрогенератор

Если грамотно подойти к вопросу покупки вертикального ветрогенератора, можно увеличить его производительность и сократить срок окупаемости. Сначала следует рассмотреть разные виды вертикальных ветрогенераторов:

  • ортогональные генераторы, которые не нуждаются в направляющих механизмах. Они имеют несколько лопастей параллельно основной оси. Работа такого генератора не зависит от направления ветра
  • ветрогенераторы с ротором Дарье. Они имеют две-три лопасти на плоском винте. Главное достоинство конструкции в том, что ее можно монтировать на уровне земли
  • генераторы с ротором Савониуса. Они очень эффективны, так как работа винта может быть проведена на низких скоростях, что существенно снижает расход аккумулятора
  • устройства с большим количеством лопастей на оси. Это более усовершенствованная версия ортогонального прибора. Они очень эффективны, но и цены на них ощутимо выше
  • приборы с геликоидным ротором. Они также произошли от ортогонального прибора. Благодаря своей сложной технологии лопасти на оси оказывают небольшую нагрузку на катушку. Это повышает срок эксплуатации генератора. Но и на них цена очень высока

Самыми популярными ветрогенераторами являются ортогональные и с ротором Савониуса. Почти каждый ветрогенератор с вертикальной осью работает на неодимовых магнитах. Они достаточно эффективны, при этом стоимость не слишком высока. Чтобы не переплатить при выборе ветрогенератора, можно сделать правильные расчеты своими руками.

Что нужно рассчитать при выборе генератора

Когда вы решили приобрести такой полезный прибор, как ветрогенератор, нужно учитывать следующие параметры:

  • мощность ветрогенератора на неодимовых магнитах. Если в вашей местности нет сильных ветров, вам нужен генератор с маленькой мощностью
  • направление ветра. Если ветра часто меняют направление, вам подойдет только вертикальный ветрогенератор с подвижными лопастями
  • марка. От производителя напрямую зависит цена прибора. Следует помнить, что импортный товар всегда дороже российских аналогов

Конечно, в первую очередь нужно высчитать мощность.

Как сделать расчет ветрогенератора самостоятельно

Чтобы рассчитать мощность ветрогенератора для вашей местности, воспользуйтесь специальными формулами. Сначала нужно рассчитать количество энергии, которую сможет выработать генератор в течение года в вашей местности. Для этого нужно выполнить ряд действий:

  • произвести расчет. На основе результатов будут выбраны длина лопастей и высота башни
  • провести анализ скорости ветра в вашей местности. Это можно сделать своими руками с помощью специального прибора, наблюдая за ветром несколько месяцев, или запросить результаты с местной метеостанции

Методика расчета мощности ветреного потока своими руками подразумевает использование формулы — P*= krV 3S/2, [В т]. В этой формуле используются следующие обозначения:

  • r — плотность воздуха, которая при нормальных условиях составляет 1,225 кг/м3
  • V — скорость потока в м/с
  • S — площадь потока в квадратных метрах
  • k — коэффициент эффективности турбины ветрогенератора в значении 0,2-0,5

С помощью этих расчетов вы сможете выявить подходящую мощность для вашей местности. На упаковке ветрогенератора указано, при каком потоке ветра его работа эффективнее всего. Как правило, это значение находится в промежутке 7-11 м/с.

Ветрогенераторы (от ортогонального до Савониуса) являются оптимальным источником дополнительной или основной электроэнергии в частном доме. Если вы сделаете правильный расчет ветрогенератора своими руками, то сможете приобрести подходящий под вашу местность агрегат.

Как сделать аксиальный ветрогенератор

Эта статья посвящена созданию аксиального ветрогенератора на неодимовых магнитах со статорами без металла. Ветряки подобной конструкции стали особенно популярны из-за растущей доступности неодимовых магнитов.

Материалы и инструменты использованные для постройки ветряка этой модели:

1) ступица от автомобиля с тормозными дисками.
2) дрель с металлической щеткой.
3) 20 неодимовых магнитов размером 25 на 8 мм.
4) эпоксидная смола
5) мастика
6) труба ПВХ 160 мм диаметром
7) ручная лебедка
8) труба металлическая длинной 6 метров

Рассмотрим основные этапы постройки ветряка.

За основу генератора была взята ступица автомобиля с тормозным диском. Так как основная деталь заводского производства, то это послужит гарантом качества и надежности. Ступица была полностью разобрана, подшипники находящиеся в ней были проверены на целостность и смазаны. Так как ступица была снята со старого автомобиля, то ржавчину пришлось зачистить с помощью щетки, которую автор насадил на дрель.
Ниже предоставлена фотография ступицы.

Затем автор приступил к установке магнитов на диски ротора. Было использовано 20 магнитов. Причем важно заметить, что для однофазного генератора количество задействованных магнитов равно количеству полюсов, для двухфазного соотношение будет три к двум или четыре полюса к трем катушкам. Магниты следует крепить на диски с чередованием полюсов. Для соблюдения точности необходимо сделать шаблон размещения на бумаге, либо начертить линии секторов прямо на самом диске.

Рассмотрим основные отличия конструкции однофазного и трехфазного генераторов.
Однофазный генератор будет давать вибрацию при нагрузках, что будет отражаться на мощности самого генератора. Трехфазная конструкция лишена подобного недостатка благодаря чему, мощность постоянна в любой момент времени. Это происходит потому, что фазы компенсируют потерю тока друг в друге. По скромным расчетам автора трехфазная конструкция превосходит однофазную на целых 50 процентов. К тому же из-за отсутствия вибраций мачта не будет дополнительно раскачиваться,следовательно не будет дополнительного шума при работе ротора.

При расчете зарядки 12-ого аккумулятора, которая будет начинаться на 100-150 оборотах в минуту, автор сделал по 1000-1200 витков в катушках. При намотке катушек автор использовал максимально допустимую толщину проволоки, чтобы избежать сопротивления.
Для наматывания проволоки на катушки автор соорудил самодельный станок, фотографии которого представлены ниже.

Лучше использовать катушки эллипсоидной формы, что позволит большей плотности магнитных полей их пересекать. Внутреннее отверстие катушки стоит делать по диаметру магнита либо больше него. В случае, если делать их меньше, то лобовые части практически не участвуют в выработке электроэнергии, а служат проводниками.

Толщина самого статора должна равняться толщине магнитов, которые задействованы в установке.

Форму для статора можно сделать из фанеры, хотя автор решил этот вопрос иначе. Был нарисован шаблон на бумаге, а затем сделаны борта при помощи мастики. Так же для прочности была использована стеклоткань. Для того, чтобы эпоксидная смола не прилипла к форме, ее необходимо смазать воском или вазелином, или можно использовать скотч, пленку, которую в последствии можно будет отодрать от готовой формы.

Перед заливкой катушки необходимо точно закрепить, а их концы вывести за пределы формы, чтобы затем соединить провода звездой или треугольником.

После того, как основная часть генератора была собрана, автор измерил протестировал его работу. При ручном вращении генератор вырабатывает напряжение в 40 вольт и силу тока в 10 ампер.

Для поднятия мачты используется ручная лебедка.
Сам винт для генератора был сделан из трубы ПВХ диаметром 160 мм.

После установки и испытаний генератора в стандартных условиях автор сделал следующие наблюдения: мощность генератора доходит до 300 ватт при ветре в 8 метров в секунду. В последующем увеличил мощность генератора за счет металлических сердечников установленных в катушки. Винт стартует уже при двух метрах в секунду.

Дальше автор приступил к совершенствованию конструкции в целях увеличения мощности генератора. Были набраны магнитопроводы из пластин, которые в последствии были установлены в конструкцию. Из-за их установки появился эффект залипания, но не очень сильный. Старт работы винта происходит при скорости ветра около двух метров в секунду.

Таким образом установка металлических сердечников увеличила мощность генератора до 500 ватт при ветре в 8 метров в секунду.
Для защиты от сильных ветров была использована классическая схема увода винта складывающимся хвостом.

В среднем генератор способен вырабатывать до 150 ватт энергии в час, которая идет на зарядку аккумуляторов.

Оцените статью
Добавить комментарий