Робопес на Arduino своими руками

Робопес на Arduino своими руками

Один автор решил поделиться своим первым роботом под названием Z-RoboDog. Особенность робота в том, что он внешне похож на собачку, да и ведет себя подобным образом. Он умеет ходить вперед и останавливается, когда перед ним возникает препятствие. В первую очередь робот делался с расчетом на экономичность, то есть было затрачено минимум материалов и средств. Рассмотрим подробнее, как же своими руками можно создать такого робота.

Материалы и инструменты для изготовления робота:
– 1 Arduino Mega или же Uno (в данном варианте используется Mega);
– куски оргстекла (из него будет изготавливаться корпус и лапы);
– сервопривод (автор использовал TowerPro SG90, всего надо 8 штук);
– 1 ультразвуковой дальномер типа HC-SR04;
– аккумулятор типа 18560, 3.7V (автор использовал TrustFire 2400 mAh 2 штуки);
– держатель для батарей образца 18560 (автор использовал переделанную упаковку);
– стойка для печатной платы 25 мм (4 штуки);
– элемент макетной платы;
– перемычки-провода;
– 18 винтов DIN 7985 M2, 8 мм;
– 18 гаек DIN 934 M2;
– дрель или шуруповерт.

Процесс сборки робота:

Шаг первый. Изготовление корпуса робота
Для изготовления корпуса робота понадобится прозрачное оргстекло толщиной 1.5 мм. Заготовки вырезались лазером по разработанному автором чертежу, который прилагается к статье.

Дальше элементы корпуса склеиваются, это обеспечивает довольно прочную конструкцию для такого робота. При склеивании корпуса очень важно проследить за тем, чтобы совпали отверстия в нижней части. Боковые стенки нужно крепить так, чтобы отверстия для выхода проводов были как можно к задней стенке. Широкое отверстие на задней стенке необходимо для вывода USB провода. Это нужно учитывать при сборке.






Шаг третий. Сборка лап робота
Лапы нужно разметить посередине и подставив качалку сервоприводов просверлить отверстия диаметром 1.5 мм. Качалки нужно закрепить так, чтобы шляпки шурупов располагались со стороны посадочного места.

Отверстия для крепления сервоприводов должны иметь диаметр 2 мм. Они должны быть закреплены таким образом, чтобы их валы находились ближе к узкому краю лапы.






Для того чтобы лапы не скользили при ходьбе робота, на них нужно приклеить резинки. Однако переднюю часть лап лучше не трогать, так как в таком случае робот может начать цепляться за дорогу и спотыкаться. Для этих целей можно использовать куски липкого коврика из автомобиля.

Шаг четвертый. Установка дальнометра
Для крепления ультразвукового дальнометра нужно просверлить отверстия диаметром 2 мм. При установке дальнометра его ножки должны быть развернуты вверх.

На этом же этапе можно установить держатель батареек. В корпусе он должен находиться посередине. Далее подключается плата Arduino и к ней все электронные компоненты. В качестве разветвителя питания используется часть макетной платы.

Шаг пятый. Настройка и запуск робота
На этом этапе нужно откалибровать шаги робота, для этого устанавливаются лапы. Самая большая проблема здесь в качалках, они крепятся к валам лишь в определенных положениях. Еще сервоприводы могут отличаться градусами работы. Лапы нужно постараться выставить так, как показано на фото. Визуально лапы должны находиться в одинаковых положениях.

В основной стойке также можно выставить лапы. Далее нужно не забыть прикрутить качалки к валам сервоприводов.




Цифрами на схеме обозначены лапы. При этом каждая лапа ассоциируется с тем двигателем, который ей двигает. Обозначениями плюс и минус указывается направление, в котором двигается лапа. В качестве исходных углов были использованы углы стойки (s1, s2, s3 и т.д.). К примеру, если есть задача вытянуть вторую лапу, то нужно изменить угол сервоприводов s3 и s4. В массиве это будет отражено так .

Вот и все, после установки прошивки робот готов к испытаниям. Как и многие другие, его можно еще дорабатывать и расширять его способности. Впрочем, даже в таком классическом исполнении робот ведет себя очень интересно.

Робопес на Arduino своими руками

  • Главная
  • Форум
  • Вход
  • Регистрация
  • RSS

3 (1) Видеоуроки по Ard.

Хочу показать и рассказать о своем первом самодельном роботе Z-RoboDog. Также поделится всеми материалами, чертежами и файлами, используя которые вы сами сможете собрать такую собачку. Данный робот может ходить вперед, и останавливаться перед препятствиями. Возможно в будущем добавлю дополнительные сервоприводы и ступни. Ну, а сейчас выкладываю всё, что сделано в данной версии.

Z-RoboDog – это мой первый эксперимент по созданию роботов. Всё придумывал и делал самостоятельно. В первую очередь проект должен был быть максимально недорогим. Корпус создавал без всяких расчетов и балансировки, основное требование – минимальные габариты. Итак давайте посмотрим как собирается этот робот и что он может.

Что вам понадобиться для сборки Z-RoboDog:

1. Набор деталей корпуса и лап из оргстекла 1.5 мм.
2. Arduino Mega или Uno (используется Mega) – 1 шт.
3. Микро сервопривод (используются TowerPro SG90) – 8 шт.
4. Ультразвуковой дальномер HC-SR04 – 1 шт.
5. Аккумулятор размером 18560, 3.7V (используются TrustFire 2400 mAh) – 2 шт.
6. Держатель батарей размера 18560 (используется переделанный контейнер – упаковка) – 1 шт.
7. Стойка для печатной платы 25 мм. (используется вот такие стойки) – 4 шт.
8. Часть макетной платы.
9. Провода-перемычки.
10. Винт DIN 7985 M2, 8 мм. – 18 шт.
11. Гайка DIN 934 M2 – 18 шт.
12. Шуруповерт или дрель.

Сборка робота Z-RoboDog:

1. Корпус робота изготовлен из прозрачного оргстекла толщиной 1.5 мм. Все детали вырезаны лазером по чертежу сделанном в программе CorelDraw (скачать файл z-robodog_2_4_7_s.cdr).

2. Склейте корпус секундным клеем. Прочности склеенного корпуса будет вполне достаточно. При сборке учитывайте положение отверстий на нижней крышке (смотрите на фото), а лучше приложите плату и убедитесь что всё совпадает. Боковые стенки крепите так, чтобы отверстия для проводов находились ближе к задней стенке. Более широкое отверстие на задней стенке предназначено для USB провода, учтите это при сборке.


3. Отметьте и просверлите отверстия (сверло 2 мм.). Закрепите сервоприводы в корпусе используя болты и гайки (пункты 10, 11 из списка). Валы передних сервоприводов должны быть ближе к передней стенке. Валы задних сервоприводов ближе к задней стенке.



4.1. Соберите лапы. Возьмите верхние части лап (с двумя отверстиями). Разметьте середину детали. Подставив качалку сервоприводов отметьте места крепления шурупами и просверлите отверстия (сверло 1.5 мм). Закрепите качалки так, чтобы шляпки шурупов были со стороны посадочных мест. Качалки закрепите с разных сторон и посадочные места для валов до были в противоположном направлении.

4.2. Отметьте и просверлите отверстия для крепления сервоприводов (сверло 2 мм). Валы закрепленных сервоприводов должны находиться ближе к узкому краю лапы.

4.3. Чтобы лапы не проскальзывали наклейте на них например резину. Но переднюю часть лапы заклеивать не стоит, при шагах собачка может зацепляться и застревать. Я наклеил полосочки липучего коврика из машины.

5. Отметьте и просверлите отверстия для крепления ультразвукового дальномера (сверло 2 мм). Установите дальномер, ножки контактов должны быть направлены вверх.

6. Установите держатель батарей так, чтобы в корпусе он располагался по середине. Закрепите плату Arduino и подключите все компоненты. Для разветвления питания использовалась часть макетной платы.

Настройка и запуск робота Z-RoboDog:

На этом этапе вам придется самостоятельно установить лапы, чтобы можно было откалибровать шаги. Основная проблема в качалках, которые крепятся на валы только в определенных положениях. А также сами сервоприводы могут отличаться рабочими градусами.

Вот как у моей собачки выглядят лапы в крайних точках углов сервопривода (переменные zs1, zs2, zs3 и т.д). Постарайтесь лапы выставить как на фото. Визуально лапы должны быть в одинаковых положениях.

В основной стойке вы так же сможете выставить лапы. После чего не забудьте прикрутить качалки к валам сервоприводов.

Программная часть Z-RoboDog:

Код очень простой, везде добавлены комментарии. Все движения находятся в массиве, чтобы не запутаться в цифрах я использовал переменные для каждого сервопривода. Например, s1 – сервопривод 1, s2 – сервопривод 2 и так далее. Для упрощения понимания предлагая вам вот такую схему.

На схеме пронумерованы лапы, каждая часть лапы ассоциируется с сервоприводом который её двигает. Также для каждой лапы указаны направления движения, знаки плюс и минус указывают куда будет двигаться лапа при увеличении или уменьшении угла. Исходными углами выбраны углы основной стойки (s1, s2, s3 и т.д.). Например если вам нужно вытянуть 2-ю лапу вы должны увеличить угол s3 и s4, в массиве это будет выглядеть так s3+100,s4+50, s5,s6, s7,s8>. Вот полный скетч. Код писался в силу моих познаний, сообщите если я выбрал не правильный путь реализации. Посмотреть код можно тут Z_RoboDog_v2_4_07_Stabil.ino.txt

Читайте также:  Самый лучший утеплитель для пола

Видео проекта Z-RoboDog:

Все видео можно посмотреть тут: плейлист Z-RoboDog

МозгоЧины

#самоделки #инструкции #ремонт_техники #изобретения

МозгоЧины

#самоделки #инструкции #ремонт_техники #изобретения

Четвероногий робот на базе Arduino

Четвероногий робот на базе Arduino

Специально для mozgochiny.ru

Всем привет. Эта статья небольшой рассказ о том, как сделать робота своими руками. Почему именно рассказ, спросите вы? Всё из-за того, что для изготовления подобной поделки необходимо использовать значительный багаж знаний, который очень трудно изложить в одной статье. Мы пройдёмся по процессу сборки, заглянем одним глазом в программный код и в конечном счете оживим детище «силиконовой долины». Советую посмотреть видео, чтобы иметь представление о том, что в итоге должно получится.

Перед тем, как двигаться дальше прошу отметить следующее, что при изготовлении поделки использовался лазерный резак. От лазерного резака можно отказаться, обладая достаточным опытом работы руками. Точность выступает тем ключом, что поможет завершить проект успешно!

Шаг 1: Как это работает?

Робот имеет 4 ноги, с 3 сервоприводами на каждой из них, что позволяют ему перемещать конечности в 3-х степенях свободы. Он передвигается «ползучей походкой». Пусть она медленная, зато одна из самых плавных.

Для начала нужно научить робота двигаться вперед, назад, влево и вправо, затем добавить ультразвуковой датчик, что поможет обнаруживать препятствия/преграды, а после этого Bluetooth модуль, благодаря которому управление роботом выйдет на новый уровень.

Шаг 2: Необходимые детали

Скелет изготавливается из оргстекла толщиной 2 мм.

Электронная часть самоделки будет состоять из:

  • 12 сервоприводов;
  • arduino nano (можно заменить любой другой платой arduino);

  • Шилда для управления сервоприводами;
  • блока питания (в проекте использовался БП 5В 4А);

  • ультразвукового датчика;
  • hc 05 bluetooth модуля;

Для того, чтобы изготовить шилд понадобится:

  • монтажная плата (предпочтительно с общими линиями (шинами) питания и земли);
  • межплатные штыревые соединители — 30 шт;
  • гнезда на плату – 36 шт;

Инструменты:

  • Лазерный резак (или умелые руки);
  • Суперклей;
  • Термоклей.

Шаг 3: Скелет

Воспользуемся графической программой, чтобы начертить составные части скелета.

После этого в любой доступный способ вырезаем 30 деталей будущего робота.

hexy_legs_all

Шаг 4: Сборка

После резки снимаем защитное бумажное покрытие с оргстекла.

Далее приступаем к сборке ног. Крепежные элементы встроенные в части скелета. Всё, что остаётся сделать — это соединить детали воедино. Соединение довольно плотное, но для большей надежности можно нанести по капле суперклея на элементы крепежа.

Затем нужно доработать сервоприводы (приклеить по винту напротив валов сервоприводов).

Этой доработкой мы сделаем робота более устойчивым. Доработку нужно выполнить только для 8 сервоприводов, остальные 4 будут крепиться непосредственно на тело.

Прикрепляем ноги к связующему элементу (изогнутая деталь), а его в свою очередь к сервоприводу на теле.

Шаг 5: Изготавливаем шилд

Изготовление платы довольно простое, если следовать представленным в шаге фотографиям.

Шаг 6: Электроника

Закрепим выводы сервоприводов на плате arduino. Выводы следует соединять в правильной последовательности, иначе ничего не будет работать!

Шаг 7: Программирование

Пришло время оживить Франкенштейна. Сначала загрузим программу legs_init и убедимся в том, что робот находится в таком положении, как на картинке. Далее загрузим quattro_test, чтобы проверить реагирует ли робот на базовые движения, такие как движение вперед, назад, влево и вправо.

ВАЖНО: Вам необходимо добавить дополнительную библиотеку в программную среду arduino IDE. Ссылка на библиотеку представлена ниже:

flexitimer2-master

Робот должен сделать 5 шагов вперед, 5 шагов назад, повернутся влево на 90 градусов, повернутся вправо на 90 градусов. Если Франкенштейн делает всё правильно, мы двигаемся в верном направлении.

P.S: установите робота на чашку, как на стенд, чтобы каждый раз не выставлять его на первоначальную точку. Как только тесты показали нормальную работу робота, можем продолжать испытания, поставив его на землю/пол.

init_and_test

Шаг 8: Инверсная кинематика

Инверсная (обратная) кинематика – именно она в действительности и управляет роботом (если вам не интересна математическая сторона этого проекта и вы торопитесь закончить проект можете пропустить данный шаг, но знание того, что движет роботом всегда будут полезны).

Простыми словами инверсная кинематика или сокращенно ик – «часть» тригонометрических уравнений, что определяют положение острого конца ноги, угла каждого сервоприводи и т.д., что в итоге определяют пару предварительных установочных параметров. Для примера, длина каждого шага робота или высота на которой будет располагаться тело во время движения/покоя. Используя эти предопределенные параметры, система будет извлекать величину, на которую следует сдвинуть каждый сервопривод, для того чтобы управлять роботом при помощи задаваемых команд.

На фотографии показаны тригонометрические уравнения, которые в последствии трансформировались в математическую часть программы.

Код прикрепленный ниже – всего лишь недоработанные формулы, с которыми вы можете «повозится», подтвердить и попробовать найти лучшее методы/алгоритмы исполнения.

quattro_ik_alg

Шаг 9:

Как только вы увидите, что робот выполняет все базовые движения, можете приступать к доработке конструкции. Ультразвуковой датчик позволит роботу избегать препятствий на своём пути. Также можете установить модуль Bluetooth или модуль голосового управления.

Для выполнения движений, вам нужно вызывать следующие функции.

  • для движения вперед — step_forward();
  • для движения назад — step_back();
  • для поворота налево — turn_left();
  • для поворота направо — turn_right();
  • стоять — stand();
  • сидеть — sit();

В скобках (входные параметры функции) необходимо указывать целые значение для задания числа шагов, которые робот будет выполнять.

spider_robot_turn_random

Шаг 10: QUATTRO готов!

Попробовав повторить данный проект, вы получите бесценный опыт, который можно будет применить в дальнейшем. Надеюсь, вам понравилась статья. Спасибо за внимание!

Как сделать робота на Ардуино своими руками: самодельный robot Arduino в домашних условиях

В сегодняшней статье я расскажу вам, как сделать робота, обходящего препятствия, на базе микроконтроллера Ардуино своими руками.

Чтобы сделать робота в домашних условиях вам понадобится собственно сама плата микроконтроллера и ультразвуковой сенсор. Если сенсор зафиксирует препятствие, сервопривод позволит ему обогнуть препятствие. Сканируя пространство справа и слева, робот выберет наиболее предпочтительный путь для обхода препятствия.

У робота есть индикаторный диод, зуммер, сигнализирующий об обнаружении препятствия, и функциональная кнопка.
Самодельный робот очень простой в исполнении.

Шаг 1: Необходимые материалы

  • Arduino UNO
  • Мини макетная плата
  • Драйвер двигателя L298N
  • Два электромотора с колесами
  • Ультразвуковой датчик измерения расстояния HC — SR04
  • Микросервопривод
  • Кнопка
  • Красный диод
  • Резистор 220 Ом
  • Отсек для элемента питания 9В (с/без коннектора)
  • 8 стоек для макетных плат с наружной и внутренней резьбой, 8 винтов и 8 гаек

Также вам понадобится одна большая металлическая скрепка и бусина (для заднего опорного колеса).

Для изготовления каркаса робота использован кусок плексигласа (оргстекла) 12х9,5 см. Можно сделать каркас из дерева или металла, или даже из компакт-дисков.

  • Дрель
  • Суперклей
  • Отвертка
  • Клеевой пистолет (опционально)

Для питания робота используется батарейка 9В (крона), она достаточно компактная и дешевая, но разрядится уже примерно через час. Возможно, вы захотите сделать питание от аккумулятора на 6 В (минимум) или 7 В (максимум). Аккумулятор мощнее батарейки, но и дороже и больше по габаритам.

Шаг 2: Делаем каркас робота

Положите всю электронику на плексиглас и маркером отметьте места, где нужно будет просверлить монтажные отверстия (фото 1).

На нижней стороне пластины плексигласа приклейте на суперклей электромоторы. Они должны быть параллельны друг другу, с помощью линейки-угольника проверьте их положение прежде чем клеить (фото 2). Затем приклейте на суперклей отсек для батарейки.

Можно также просверлить отверстия под провода электромоторов и питания.

Шаг 3: Монтируем электронику

Закрепите на каркасе плату контроллера и драйвер двигателей, используя стойки для печатных плат, винты и гайки. Миниатюрная макетная плата клеится на липкий слой (уже есть на нижней стороне) (фото 1).

Теперь делаем заднее опорное колесо из скрепки и бусины (фото 2). Концы проволоки закрепите на нижней стороне каркаса суперклеем или термоклеем.

Читайте также:  Ремонт гаражных ворот своими руками

Шаг 4: Устанавливаем «глаза» робота

На передней части каркаса приклейте на суперклей миниатюрный сервопривод. Рассмотрите на первом фото, как крепится плата ультразвукового датчика к сервоприводу с помощью маленького вала.
На втором фото показано, как выглядит завершенное соединение датчика и сервопривода.

Шаг 5: Схема подключений

Теперь приступаем к подключению электронных компонентов. Подключение компонентов происходит согласно схеме на рисунке 1.

На макетную плату устанавливайте только диод, зуммер и кнопку, это упрощает схему и позволяет добавить дополнительные устройства в дальнейшем.

Шаг 6: Код

Код, который приведен ниже, сделан с помощью Codebender.

Codebender – это браузерный IDE, это самый простой способ программировать вашего робота из браузера. Нужно кликнуть на кнопку «Run on Arduino» и все, проще некуда.

Вставьте батарейку в отсек и нажмите на функциональную кнопку один раз, и робот начнет движение вперед. Для остановки движения нажмите на кнопку еще раз.

Нажав кнопку «Edit», вы можете редактировать скетч для своих нужд.

Например, изменив значение «10» измеряемого расстояния до препятствия в см, вы уменьшите или увеличите дистанцию, которую будет сканировать robot Arduino в поисках препятствия.

Если робот не двигается, может изменить контакты электромоторов (motorA1 и motorA2 или motorB1 и motorB2).

Шаг 7: Завершенный робот

Ваш самодельный робот, обходящий препятствия, на базе микроконтроллера Arduino готов.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Делаем самобалансирующего робота на Ардуино

Рассказываем о том как можно использовать Ардуино для создания самобалансирующего робота, который балансирует как Сигвей.

Как работает балансировка?

Сигвей от англ. Segway – двухколесное средство передвижения стоя, оснащенное электроприводом. Еще их называют гироскутерами или электрическими самокатами.

Вы когда-нибудь задумывались, как работает Сигвей? В этом уроке мы постараемся показать вам, как сделать робота Ардуино, который уравновешивает себя точно так же, как Segway.

Чтобы сбалансировать робота, двигатели должны противодействовать падению робота. Это действие требует обратной связи и корректирующих элементов.

Элемент обратной связи – гироскоп-акселерометр MPU6050, который обеспечивает как ускорение, так и вращение во всех трех осях (основы MP26050 I2C). Ардуино использует это, чтобы знать текущую ориентацию робота. Корректирующим элементом является комбинация двигателя и колеса.

В итоге должен получиться примерно такой друг:

Схема робота

Сначала подключите MPU6050 к Ардуино и проверьте соединение, используя коды в этом учебном руководстве по интерфейсу IMU. Если данные теперь отображаются на последовательном мониторе, вы молодец!

Продолжайте подключать остальные компоненты, как показано выше. Модуль L298N может обеспечить +5В, необходимый для Ардуино, если его входное напряжение составляет +7В или выше. Тем не менее, мы выбрали отдельные источники питания для двигателя и схемы.

Создание робота

Корпус робота изготовлен в основном из акрилового пластика с двумя редукторными двигателями постоянного тока:

Основная печатная плата, состоящая из Arduino Nano и MPU6050:

Модуль драйвера двигателя L298N:

Мотор редуктора постоянного тока с колесом:

Самобалансирующийся робот по существу является перевернутым маятником. Он может быть лучше сбалансирован, если центр массы выше относительно колесных осей. Высший центр масс означает более высокий момент инерции массы, что соответствует более низкому угловому ускорению (более медленное падение). Вот почему мы положили батарейный блок на верх. Однако высота робота была выбрана исходя из наличия материалов

Завершенный вариант самостоятельно балансирующего робота можно посмотреть на рисунке выше. В верхней части находятся шесть Ni-Cd-батарей для питания печатной платы. В промежутках между моторами используется 9-вольтовая батарея для драйвера двигателя.

Теория

В теории управления, удерживая некоторую переменную (в данном случае позицию робота), требуется специальный контроллер, называемый ПИД (пропорциональная интегральная производная). Каждый из этих параметров имеет «прирост», обычно называемый Kp, Ki и Kd. PID обеспечивает коррекцию между желаемым значением (или входом) и фактическим значением (или выходом). Разница между входом и выходом называется «ошибкой».

ПИД-регулятор уменьшает погрешность до наименьшего возможного значения, постоянно регулируя выход. В нашем самобалансирующем роботе Arduino вход (который является желаемым наклоном в градусах) устанавливается программным обеспечением. MPU6050 считывает текущий наклон робота и подает его на алгоритм PID, который выполняет вычисления для управления двигателем и удерживает робота в вертикальном положении.

PID требует, чтобы значения Kp, Ki и Kd были настроены на оптимальные значения. Инженеры используют программное обеспечение, такое как MATLAB, для автоматического вычисления этих значений. К сожалению, мы не можем использовать MATLAB в нашем случае, потому что это еще больше усложнит проект. Вместо этого мы будем настраивать значения PID. Вот как это сделать:

  1. Сделайте Kp, Ki и Kd равными нулю.
  2. Отрегулируйте Kp. Слишком маленький Kp заставит робота упасть, потому что исправления недостаточно. Слишком много Kp заставляет робота идти дико вперед и назад. Хороший Kp сделает так, что робот будет совсем немного отклоняться назад и вперед (или немного осциллирует).
  3. Как только Kp установлен, отрегулируйте Kd. Хорошее значение Kd уменьшит колебания, пока робот не станет почти устойчивым. Кроме того, правильное Kd будет удерживать робота, даже если его толькать.
  4. Наконец, установите Ki. При включении робот будет колебаться, даже если Kp и Kd установлены, но будет стабилизироваться во времени. Правильное значение Ki сократит время, необходимое для стабилизации робота.

Поведение робота можно посмотреть ниже на видео:

Код Ардуино самобалансирующего робота

Нам понадобилось четыре внешних библиотеки, для создания нашего робота. Библиотека PID упрощает вычисление значений P, I и D. Библиотека LMotorController используется для управления двумя двигателями с модулем L298N. Библиотека I2Cdev и библиотека MPU6050_6_Axis_MotionApps20 предназначены для чтения данных с MPU6050. Вы можете загрузить код, включая библиотеки в этом репозитории.

Значения Kp, Ki, Kd могут работать или не работать. Если они этого не делают, выполните шаги, описанные выше. Обратите внимание, что наклона в коде установлен на 173 градуса.

Вы можете изменить это значение, если хотите, но обратите внимание, что это угол наклона, которым должен поддерживаться роботом. Кроме того, если ваши двигатели слишком быстры, вы можете отрегулировать значения:

  1. motorSpeedFactorLeft
  2. motorSpeedFactorRight

Робот на Ардуино и машинка на Bluetooth своими руками

Робот – машинка на Ардуино становятся одним из самым популярных инженерных проектов в школьной робототехнике. Именно с таких устройств, автономных или управляемых со смартфона и bluetooth, начинается путь в робототехнику “после Lego”. К счастью, сегодня можно без труда купить все необходимые компоненты и достаточно быстро создать своего первого робота для езды по линии или объезда препятствий. В этой статье вы найдете подробную видео инструкцию как сделать продвинутый автомобиль Arduino Car своими руками, с питанием, датчиками линии, расстояния и управлении через bluetooth.

Робот на ардуино своими руками

В отличие от других проектов, создание робота – автомобиля (Arduino Car) требует понимания и навыков работы сразу с несколькими важными компонентами, поэтому не стоит приступать к созданию машинок без получения базовых навыков работы с платформой Arduino. В любом случае, вам нужно будет но только подключить готовые модули, но и собрать конструкцию, шасси с двигателями, обеспечить правильное питание и управление. Все это потребует определенного терпения.

Робот машина на Ардуино

Вот список ключевых компонентов, которые обязательно встретятся в проекте.

Контроллер Ардуино

Куда уж без него, если мы говорим о проектах на этой платформе. Как правило, роботы машины делают на базе плат Arduino Uno и Nano. Mega будут слишком большие, Pro Mini сложнее подключать к компьютеру и соединять с остальными компонентами, а Leonardo требуют дополнительных навыков в программировании, они дороже и их основное преимущество (тесная интеграция с компьютером в качестве периферийного устройства) в данном случае не слишком востребована.

Есть еще вариант использования плат ESP8266 или ESP32, тогда в проекте появляется возможность управления машиной через WiFi. Но и сами платы и их программирование требует определенных навыков, в этой статье мы будем говорить преимущественно об Uno или Nano.

Конструкция, шасси и двигатели робота на Ардуино

Для того, чтобы что-то поехало или стало перемещаться, надо снабдить “это” колесами, гусеницами или манипуляторами-ногами. Вот тут выбор совершенно не ограничен, можно использовать совершенно любые комбинации и сочетания платформ. Как правило, в качестве начального варианта берутся уже готовые наборы платформ с Алиэкспресс.

Читайте также:  Плита OSB для пола

Двигатель, шасси и колеса машинки на ардуино

Если работать со стандартными наборами вам не интересно, можно создать платформу своими руками. Например, разобрать игрушечные радиоуправляемые машинки или любые двигатели на 5-12 вольт, с редукторами или без. Колеса можно создать и самим, что тоже является интересной задачей.

Драйвер двигателей

Ардуино – достаточно ранимое устройство, не терпящее больших нагрузок по току. Соединяя его с “брутальными” мощными двигателями, не избежать беды. Поэтому для нормальной совместной работы нам нужно будет включить в схему робота компонент, отвечающий за управление двигателями – подающий и отключающий ток на их обмотки. Речь идет о микросхеме или готовом модуле, которые называют драйвером двигателя. На нашем сайте есть статьи, посвященные драйверам, построенным на схеме H-моста. Если вы покупаете готовые шасси, то обязательно предусмотрите возможность размещения на них подходящего драйвера.

Красивый корпус

Как правило, вся конструкция автомобиля строится вокруг его шасси. Если посмотреть примеры готовых проектов, то они часто выглядят как “провода на колесиках” – внешний вид их изобилует пучками соединительных проводов, ведущих от восседающего на троне контроллера Ардуино к драйверам, моторам и датчикам. Между тем, красивый и функциональный корпус не только вызывает правильные эстетические чувства и помогает выделить вашу модель от остальных. Хороший корпус может превратить игрушку в реальное устройство, помогает привить навыки конструирования и промышленного дизайна, что важно для инженеров любого возраста.

Питание робота

Обеспечение правильной схемы питания – это то, что очень часто оказывается на последнем месте в списке приоритетов начинающих ардуинщиков. Между тем, именно ошибки в схеме электропитания становятся основными причинами проблем, возникающих в процессе работы умных устройств на Ардуино. Создавая ардуино-машинку нужно предусмотреть питание контроллера, двигателей, драйвера и датчиков. У всех них есть свои ограничения и особенности работы, требуется создать оптимальное по весу и сложности решение, позволяющее учесть все эти ограничения.

Питание робота на Ардуино

Создавая по-настоящему автономное устройство робота, нужно побеспокоиться и о времени его работы, и о возможности быстрой подзарядки или смены батареек. Как правило, выбираются решения из следующих вариантов:

  • Обычные батарейки AA. Тут нужно понимать, что платы Arduino Uno, Nano и большинство двигателей, используемых в Ардуино-робототехнике, требуют напряжения в диапазоне 6-9 вольт. Поэтому придется собрать вместе последовательно не менее 4 батареек на 1,5 В, причем сами батарейки должны быть хорошего качества и обеспечивать работу с достаточно большим током. Например, большинство солевых батареек этим критериям не удовлетворяют. Батарейки AAA при создании ардуино-машинок практически не используются из-за своей пониженной емкости (хотя могут использоваться в миниатюрных моделях, где размер имеет первостепенное значение).
  • Аккумулятор AA. Здесь возникает еще большее ограничение по напряжению и току. Большинство аккумуляторов выдают напряжение 1,2 вольт, поэтому их требуется больше для “собирания” нужных нам 6-9 вольт. Несомненным плюсом является возможность перезарядки.
  • Литиевые аккумуляторы 18650. Это уже “серьезная артиллерия”, позволяющая получить большое время автономной работы, возможность подзарядки и приемлемые характеристики по току и напряжению. Рабочее напряжение для таких элементов питания – 3,7 В, что позволяет собирать готовую схему питания всего из двух элементов.
  • Другие источники питания. Сюда можно включить как более мощные и габаритные никель-металлгидридные, кадмиевые аккумуляторы, так и многочисленные литий-ионные “плоские” варианты, используемые в дронах, смартфонах или другой портативной цифровой технике.

Каким бы ни был источник питания, нужно обеспечить его надежное крепление, удобное расположение, защиту от воздействия недружелюбной окружающей среды. Если вы подключаете к одному источнику и контролер, и двигатели, и датчики, то нужно позаботиться о правильной схеме, включающей, например, надежную связь “по земле” всех устройств.

Где купить платформу и запчасти

Все, о чем говорится в этой статье, можно без проблем купить на всем известном сайте. К сожалению, подавляющее большинство предложений основываются на стандартной платформе 4WD автомобиля с двумя несущими планками, не очень надежными двигателями и колесами, любящими ездить в “развалочку”. Но эти варианты относительно не дороги и вполне подойдут для начала работы.

Объезжающий препятствия робот на Arduino

Объезжающий препятствия робот является “умным” устройством, способным автоматически обнаруживать препятствия впереди себя и избегать столкновения с ними, поворачиваясь в противоположное направление от них. Это свойство позволяет роботу работать в незнакомой обстановке и является одним из ключевых требований при создании автономных роботов. Подобные работы находят широкое применение в вооруженных силах и чрезвычайных ситуациях, а также во многих других случаях, где желательно не подвергать опасности жизнь и здоровье людей.

В этой статье мы рассмотрим создание робота на основе платы Arduino и ультразвукового датчика, способного объезжать препятствия. Ультразвуковой датчик используется для обнаружения препятствий на пути робота и расчета расстояния до них. При расстоянии до препятствия, меньшего заданной границы, робот изменяет направление и продолжает движение.

Необходимые компоненты

  1. Плата Arduino Uno (купить на AliExpress) или Nano (купить на AliExpress).
  2. Ультразвуковой датчик HC-SR04 (купить на AliExpress).
  3. Модуль драйвера двигателя LM298N (купить на AliExpress).
  4. Электродвигатели постоянного тока, работающие от напряжения 5V.
  5. Батарея.
  6. Колеса.
  7. Шасси робота.
  8. Соединительные провода.

Принцип работы ультразвукового датчика HC-SR04

Ультразвуковой датчик HC-SR04 используется для измерения расстояний в диапазоне 2-400 см с точностью 3 мм. Датчик состоит из ультразвукового передатчика, ультразвукового приемника и схемы управления.

Ультразвуковой датчик HC-SR04 обеспечивает на своем выходе сигнал, пропорциональный дистанции до препятствия. Датчик генерирует звуковые колебания в ультразвуковом диапазоне (после получения управляющего импульса) и после этого ждет когда они вернутся к нему (эхо), отразившись от какого-нибудь препятствия. Затем, основываясь на скорости звука (340 м/с) и времени, необходимом для того чтобы эхо достигло источника (нашего датчика), датчик обеспечивает на своем выходе сигнал, пропорциональный расстоянию до препятствия.

Как показано на рисунке сначала нам нужно инициировать датчик для измерения расстояний, для этого на его триггерный контакт (trigger pin) необходимо подать логический сигнал высокого уровня длительностью не менее 10 мкс, после этого датчик генерирует серию звуковых колебаний и после получения отраженного сигнала (эхо) датчик обеспечивает на своем выходе сигнал, пропорциональный расстоянию между ним и препятствием.

Ультразвуковой сигнал отражается от поверхности, возвращается обратно и улавливается приемником ультразвукового сигнала датчика. После этого на контакте Echo датчика устанавливается напряжение высокого уровня (high) на время, пропорциональное расстоянию до препятствия.

После этого расстояние до препятствия можно рассчитать по следующей формуле:

Distance= (Time x Speed of Sound in Air (343 m/s))/2

Также на нашем сайте вы можете посмотреть другие проекты, в которых был использован ультразвуковой датчик.

Для изготовления робота в этом проекте были использованы компоненты, которые достаточно легко приобрести. Для изготовления шасси робота можно использовать детскую игрушку или можно купить уже готовые шасси робота на AliExpress.

Схема проекта

Схема робота на Arduino, объезжающего препятствия, представлена на следующем рисунке. Как видите, в схеме мы использовали плату Arduino Nano, но эту же схему без изменений можно использовать и в случае использования платы Arduino Uno. Код программы в этом случае также останется без изменений.

После сборки у нас получилась конструкция робота, показанная на следующем рисунке.

Объяснение программы для Arduino

Полный код программы приведен в конце статьи, здесь же мы рассмотрим его основные фрагменты. В программе нам необходимо взаимодействовать с датчиком HC-SR04 и подавать управляющие сигналы на контакты, с которых осуществляется управление двигателями. В этом проекте не будет использовано никаких подключаемых библиотек.

Первым делом в программе необходимо инициализировать контакты, через которые происходит взаимодействие с ультразвуковым датчиком: trig pin датчика подключен к контакту 9 платы Arduino, а echo pin – к контакту 10 платы Arduino.

Оцените статью
Добавить комментарий