Как определить мощность ЛЭП?

Определение напряжения по внешнему виду

Следующий этап — определение мощностей ВЛ.

Как же узнать напряжение на ЛЭП по её внешнему виду? Легче всего это сделать по количеству проводов и по числу изоляторов. Самый простой способ — определение по изоляторам.

Существуют ВЛ разных классов напряжения. Рассмотрим поочередно каждую.

ЛЭП на 0,4 киловольта (400 Вольт) — низковольтные, встречающиеся во всех населенных пунктах. В них всегда используются штыревые изоляторы из фарфора или стекла. Опоры изготавливают из железобетона или дерева. В однофазной линии два провода. Если фазы три, проводников будет четыре и более.

Далее идут ЛЭП на 6 и 10 киловольт. Визуально они неотличимы друг от друга. Здесь всегда по три провода. В каждом используется два штыревых фарфоровых или стеклянных изолятора или один, но большего номинала. Используются эти трассы для подведения питания к трансформаторам. Минимальное расстояние до частей, проводящих ток, здесь составляет 0,6 м.

Часто в целях экономии совмещают подвеску проводников 0,4 и 10 кВ. Охранной зоной таких трасс является расстояние 10 м.

В ЛЭП на напряжение 35 кВ, используются подвесные изоляторы в количестве от 3 до 5 штук в гирлянде к каждому из трёх фазных проводов.

Обычно такие воздушные магистрали через территорию городов не проходят. Допустимым считается расстояние – 0,6 м, а охранная зона определяется 15 метрами. Опоры должны быть железобетонными или металлическими, с разнесенными друг от друга на допустимое расстояние проводниками, несущими ток.

В ЛЭП на напряжение 110 кВ монтаж каждого из проводов осуществляется на отдельной гирлянде из 6-9 подвесных изоляторов. Минимально близким к проводникам, является расстояние в 1 метр, а охранная зона определяется 20 метрами.

Материалом для опоры служит железобетон или металл.

Если напряжение 150 кВ, применяют 8-9 подвесных изоляторов на каждую гирлянду в ЛЭП. Расстояние 1,5 м до проводников тока считается в этом случае минимальным.

Когда напряжение 220 кВ, число используемых изоляторов находится в пределах от 10 до 40 единиц. Фаза передаётся по одному проводу.

Линии используют для подведения электроэнергии к крупным подстанциям. Наименьшее расстояние приближения к проводникам составляет 2 м. Величина охранной зоны – 25 м.

В последующих классах высоковольтных ЛЭП появляется отличие по числу проводов на фазу.

Если произведен монтаж двух проводников на одну фазу, а изоляторов в гирляндах по 14, перед вами магистраль 330 кВ.

Минимальным расстоянием до токоведущих частей в ней считается 3,5 м. Необходимое увеличение охранной зоны до 30 м. Материалом для опор служит железобетон или метал.

Если фаза расщепляется на 2-3 проводника, а подвесных изоляторов в гирляндах по 20, то напряжение ВЛ составляет 500 кВ.

Охранная зона в этом случае ограничивается 30 метрами. Опасной считается дистанция менее 3,5 м до проводов.

В случае разделения фазы на 4 или 5 проводников, соединение которых кольцевое или квадратное, и присутствия в гирляндах 20 и более изоляторов, напряжение ВЛ составляет 750 кВ.

Охранная территория таких трасс — 40 м, а приближение к токопроводящим частям ближе 5 м опасно для жизни.

В России есть единственная в мире ЛЭП, напряжение которой 1150 кВ. Фазы в ней делятся на 8 проводов каждая, а в гирляндах присутствуют 50 и более изоляторов.

К этой трассе не стоит приближаться более чем на 8 метров. Увидеть такую высоковольтную линию можно, например, на участке магистрали «Сибирь – Центр».

Получить подробную информацию о любой ВЛ, её местоположении можно на интерактивной карте в сети интернет.

Если фаза расщепляется на 2-3 проводника, а подвесных изоляторов в гирляндах по 20, то напряжение ВЛ составляет 500 кВ.

В зависимости от количества проводов

  • ВЛ-0,4 кВ свойственно число проводов: для 220В – два, для 330В – 4 и больше.
  • ВЛ-6, 10кВ – только три провода на линии.
  • ВЛ-35кВ, 110кВ – для отдельной ступени свой одиночный провод.
  • ВЛ-220кВ – для каждой ступени используется один толстый провод.
  • ВЛ-330кВ – в фазах по два провода.
  • ВЛ-500кВ – ступени осуществляются за счет тройного провода наподобие треугольника.
  • ВЛ-750кВ – для отдельной ступени 4-5 проводов в виде квадрата или кольца.
  • ВЛ-110кВ – 6 изоляторов;
  • ВЛ-220кВ – 10 изоляторов;
  • ВЛ-330кВ – 14;
  • ВЛ-500кВ – 20;
  • ВЛ-750кВ – от 20.

Справочные данные для медных проводов (М)

сечение провода, мм2

ВЛ-35 кВ

Линии переменного тока на 35кВ устанавливаются на металлические или железобетонные конструкции, оснащаются крупными изоляторами штыревого или подвесного типа (гирлянда от 3 до 5 штук). Могут иметь разделение на несколько линий – три или шесть проводов на опоре, охранная зона составляет 15м.

ВЛ-35кВ

ВЛ-10кВ

Как определить напряжение ЛЭП по виду изоляторов ВЛ?

Итак, перед вами стоит вопрос: “Сколько вольт в ЛЭП?” и нужно узнать напряжение в линии электропередач в киловольтах (кВ). Стандартные значения можно определить по изоляторам ВЛ и внешнему виду проводов ЛЭП на столбах.

Для повышения эффективности передачи электроэнергии и снижения потерь в воздушных и кабельных линиях, электрические сети разбивают на участки с разными классами напряжения ЛЭП.

Классификация ЛЭП по напряжению

  1. Низший класс напряжения ЛЭП – до 1 кВ;
  2. Средний класс напряжения – от 1 кВ до 35 кВ;
  3. Высокий класс напряжения – от 110 кВ до 220 кВ;
  4. Сверхвысокий класс ВЛ – от 330 кВ до 500 кВ;
  5. Ультравысокий класс ВЛ – от 750 кВ.

Сколько вольт опасно для человека?

Высокое напряжение воздействует на человека опасным для здоровья образом, так как ток (переменный или постоянный) способен не только поразить человека, но и нанести ожоги. Сеть 220 в, 50 Гц уже достаточно опасна так, как считается, что постоянное или переменное напряжение, которое превышает 36 вольт и ток 0,15А убивает человека. В связи с этим, в ряде случаев даже ток осветительной сети может оказаться смертельным для человека. Поэтому высоковольные провода подвешивают на определенной высоте на ЛЭП опорах. Высота столба ЛЭП зависит от стрелы провеса провода, расстояния от провода до поверхности земли, типа опоры и т. п

С ростом рабочего напряжения в проводах ЛЭП увеличиваются размеры и сложность конструкций опор электропередач. Если для передачи напряжения 220/380 В используются обычные железобетонные (иногда деревянные) опоры с фарфоровыми линейными изоляторами, то воздушные линии мощность 500 кВ имеют внешний вид совсем иной. Опора ВЛ 500 кВ представляет собой сборную металлическую П-образную конструкцию высотой до нескольких десятков метров, к которым три провода крепятся с помощью траверс посредством гирлянд изоляторов. В воздушных линиях электропередач максимального напряжения ЛЭП 1150 кВ для каждого из трех проводов предусмотрена отдельностоящая металлическая опора ЛЭП.

Важная роль при прокладке высоковольтных ЛЭП принадлежит типу линейных изоляторов, вид и конструкция которых зависят от напряжения в линии электропередач. Поэтому напряжение ЛЭП легко узнать по внешнему виду изолятора ВЛ.

Штыревые фарфоровые изоляторы используются для подвешивания самых легких проводов в воздушных линиях небольшой мощности 0,4-10 кВ. Штыревые изоляторы этого типа имеют значительные недостатки, основными из которых являются недостаточная электрическая прочность (ограничение напряжения ЛЭП 0,4-10 кВ) и неудовлетворительный способ закрепления на изоляторе проводов ВЛ, создающие в эксплуатации возможность повреждений проводов в местах их креплений при автоколебаниях подвески. Поэтому в последнее время штыревые изоляторы полностью уступили место подвесным. Изоляторы ВЛ подвесного типа, применяющиеся у нас в контактной сети, имеют несколько иной внешний вид и размеры.

При напряжении в ЛЭП свыше 35 кВ используются подвесные изоляторы ВЛ, внешний вид которых представляет собой фарфоровую или стеклянную тарелку-изолятор, шапки из ковкого чугуна и стержня. Для обеспечения необходимой изоляции изоляторы собирают в гирлянды. Размеры гирлянды зависят от напряжения линии и типа изоляторов высоковольтных линий.

Приблизительно определить напряжение ЛЭП, мощность линии по внешнему виду, простому человеку бывает трудно, но, как правило, это можно сделать простым способом — точно посчитать количество и узнать сколько изоляторов в гирлянде крепления провода (в ЛЭП до 220 кВ), или число проводов в одной связке («пучке») для линий от 330 кВ и выше..

Сколько вольт в высоковольтных проводах ЛЭП?

Электрические линии малого напряжения – это ЛЭП-35 кВ (напряжение 35000 Вольт) легко определить самому визуально, т.к. они имеют в каждой гирлянде небольшое количество изоляторов – 3-5 штук.

ЛЭП 110 кВ – это уже 6-10 высоковольтных изоляторов в гирляндах, если число тарелок от 10-ти до 15-ти, значит это ВЛ 220 кВ.

Если вы можете видеть, что высоковольтные провода раздваиваются (расщепление) тогда — ЛЭП 330 кВ, если количество проводов подходящих на каждую траверса ЛЭП уже три (в каждой высоковольтной цепи) — то напряжение ВЛ 500 кВ, если количество проводов в связке четыре – мощность ЛЭП 750 кВ.

Для более точного определения напряжения ВЛ обратитесь к специалистам в местное энергетическое предприятие.

Приблизительно определить напряжение ЛЭП, мощность линии по внешнему виду, простому человеку бывает трудно, но, как правило, это можно сделать простым способом — точно посчитать количество и узнать сколько изоляторов в гирлянде крепления провода (в ЛЭП до 220 кВ), или число проводов в одной связке («пучке») для линий от 330 кВ и выше..

ЛЭП внутри населённых пунктов

Внутри населённых пунктов наиболее часто встречаются линии электропередач мощностью до 100 киловольт. Это конструкции стандарта ВЛ 0,4 кВ, ВЛ 6-10 кВ и ВЛ 35 кВ. Определить их можно по нескольким признакам.

  1. На линиях мощностью 0,4 кВ провода закреплены на небольших белых фарфоровых или прозрачных стеклянных изоляторах в виде перевёрнутых чашечек на штыревых основаниях. Самих проводов может быть от четырёх до десяти, включая кабель уличного освещения. На более современных используется единый самонесущий изолированный провод.
  2. Линии от 6 до 10 кВ похожи на предыдущие, однако отличаются более крупными, массивными изоляторами, хотя и схожей конструкции. Проводов на них всего три.

Для экономии нередко эти две категории объединяются. Тогда проводники напряжения ВЛ 6-10 размещают на верхушке, а ВЛ 0,4 – несколько ниже.

  1. Более мощные линии ВЛ 35 кВ также имеют три провода, но закрепляются на более высокой и толстой бетонной опоре. Изоляторы могут быть штыревыми или подвесными – до трёх в гирлянде.

Безопасное расстояние до рабочей части этих ЛЭП до 1 метра. В обычных условиях оно соблюдается за счёт высоты опор и их продуманного расположения. Однако следует помнить, что в случае обрыва потенциально опасный участок – до 15 метров в обе стороны.

  1. На ВЛ-110 кВ кабели крепятся к изоляционным гирляндам из шести или семи элементов.
  2. На ВЛ-150 кВ изоляторов всегда восемь или девять.
  3. На линии ВЛ-220 кВ провода крепятся к изоляторам из 10-40 элементов.

Как по изоляторам определить напряжение ВЛ.

Для опытного электрика, не первый год работающего с воздушными линиями электропередач, не составит ни какого труда, визуально определить напряжение ВЛ по виду изоляторов, опор, и количеству проводов в линии без всяких приборов. Хотя в большинстве случаев чтобы определить напряжение на ВЛ достаточно лишь взглянуть на изоляторы. После прочтения этой статьи, Вы тоже легко сможете определить напряжение ВЛ по изоляторам.

Фото 1. Штыревые изоляторы на напряжение 0.4, 6-10, 35 кВ.

Это должен знать каждый человек! Но почему, зачем человеку далекому от электроэнергетики уметь определять напряжение воздушной линии электропередач по внешнему виду изоляторов и количеству изоляторов в гирлянде ВЛ? Ответ очевиден, все дело в электробезопасности. Ведь для каждого класса напряжения ВЛ, есть минимально допустимые расстояния, ближе которых приближаться к проводам ВЛ смертельно опасно.

В моей практики было несколько несчастных случаев связанных с неумением определить класс напряжения ВЛ. Поэтому далее привожу таблицу из правил по технике безопасности, в которой указаны минимально допустимые расстояния, ближе которых приближаться к токоведущим частям, находящимся под напряжением смертельно опасно.

Таблица 1. Допустимые расстояния до токоведущих частей, находящихся под напряжением.

Расстояние от людей

Расстояние от механизмов

до 1 в остальных электроустановках

не нормируется (без прикосновения)

Случай первый произошел на стройплощадке загородного дома. По неизвестной причине на стройке не было электроэнергии, недалеко от недостроенного дома проходила ВЛ-10кВ. Двое рабочих решили запитать от этой ВЛ удлинитель, для подключения электроинструмента. Зачистив два провода на удлинителе и сделав крючки, они решили при помощи палки зацепить их к проводам. На ВЛ-0,4 кВ эта схема бы работала. Но так как напряжение ВЛ было 10кВ один рабочий получил серьезные электротравмы, и чудом остался жив.

Второй случай произошел на территории производственной базы при разгрузке труб. Рабочий стропальщик разгружал с помощью автокрана металлические трубы из грузовика в зоне действия ВЛ-110кВ. В ходе разгрузки, трубы наклонились, так что один конец опасно приблизился к проводам. И даже, несмотря на то что не было непосредственного контакта проводов с грузом, из за высокого напряжения произошел пробой и рабочий погиб. Ведь убить током от ВЛ-110 кВ может даже без прикосновения к проводам, достаточно к ним лишь приблизится. Думаю теперь понятно почему так важно уметь определять напряжение ВЛ по виду изоляторов.

Главный принцип здесь заключается в том, что чем выше напряжение ЛЭП, тем большее количество изоляторов будет в гирлянде. Кстати, самая высоковольтная ЛЭП в мире находится в России, ее напряжение 1150кВ.

Первый тип линий напряжение которых нужно знать в лицо, это ВЛ-0,4 кВ. Изоляторы данных ВЛ самые маленькие, обычно это штыревые изоляторы изготовленные из фарфора или стекла, закрепленные на стальных крюках. Количество проводов в такой линии может быть либо два, если это 220В, либо 4 и более, если это 380В.

Фото 2. Деревянная опора ВЛ-0.4 кВ.

Второй тип это ВЛ-6 и 10кВ, внешне они не отличаются. ВЛ- 6кВ постепенно уходят в прошлое уступая место воздушным линиям 10кВ. Изоляторы данных линий обычно штыревые, но заметно больше изоляторов 0.4кВ. На угловых опорах могут быть использованы подвесные изоляторы, количеством один или два в гирлянде. Изготавливаются они так же из стекла или фарфора, и крепятся на стальных крюках. Итак: главное визуальное отличие ВЛ-0.4кВ от ВЛ-6, 10кВ, это более крупные изоляторы, а так же всего три провода в линии.

Фото 3. Деревянная опора ВЛ-10 кВ.

Третий тип это ВЛ-35кВ. Здесь уже используются подвесные изоляторы, или штыревые, но гораздо большего размера. Количество подвесных изоляторов в гирлянде может быть от трех до пяти в зависимости от опоры и типа изоляторов. Опоры могут быть как бетонные, так и изготовленные из металлоконструкций, а так же из дерева, но тогда тоже это будет конструкция, а не просто столб.

Фото 4. Деревянная опора ВЛ-35 кВ.

Далее идут ВЛ-110кВ, 220кВ, 330кВ, 500кВ, 750кВ. Используются только подвесные изоляторы. Количество подвесных изоляторов в гирлянде в зависимости от типа изоляторов и типа опоры может быть:

ВЛ-110кВ от 6 изоляторов в гирлянде. Каждая фаза, одиночный провод. Опоры бывают железобетонные, деревянные (почти не используют) и собранные из металлоконструкций.

Фото 5. Железобетонная опора ВЛ-110 кВ.

ВЛ-220кВ от 10 изоляторов в гирлянде. Каждая фаза выполняется толстым одиночным проводом. Напряжением выше 220кВ опоры собираются из металлоконструкций либо железобетонные.

Фото 6. Опора ЛЭП 220 кВ.

ВЛ-330кВ от 14 изоляторов в гирлянде. Идет по два провода в каждой фазе. Охранная зона данных воздушных линий электропередачи составляет 30 метров по обе стороны от крайних проводов.

Читайте также:  Как рассчитать количество светильников в помещении

Фото 7. Опора ЛЭП 330 кВ.

ВЛ-500кВ от 20 изоляторов в гирлянде, каждая фаза выполняется тройным проводом расположенным треугольником. Охранная зона 40 метров.

Фото 8. Опора ЛЭП 500 кВ.

ВЛ-750кВ от 20 изоляторов в гирлянде. В каждой фазе идет 4 либо 5 проводов расположенных квадратом либо кольцом. Охранная зона 55 метров.

Фото 9. Опора ЛЭП 750 кВ.

Таблица 2. Количество изоляторов в гирлянде ВЛ.

Для опытного электрика, не первый год работающего с воздушными линиями электропередач, не составит ни какого труда, визуально определить напряжение ВЛ по виду изоляторов, опор, и количеству проводов в линии без всяких приборов. Хотя в большинстве случаев чтобы определить напряжение на ВЛ достаточно лишь взглянуть на изоляторы. После прочтения этой статьи, Вы тоже легко сможете определить напряжение ВЛ по изоляторам.

Как определить напряжение ЛЭП по внешнему виду

Тот, кто регулярно имеет дело с воздушными линиями электропередач знает, что для различных напряжений на линиях свойственны индивидуальные конструктивные особенности опор. Поэтому для опытного специалиста электрика нет ничего проще, чем по внешнему виду опоры ЛЭП определить напряжение на ней.

Сама конструкция опоры, то какие изоляторы установлены на ней, сколько проводов, как они размещены — все это при визуальном осмотре позволит специалисту сделать вывод о напряжении конкретной высоковольтной линии. Хотя зачастую, чтобы понять какое на линии напряжение, достаточно лишь взглянуть на изоляторы, ведь их длина строго регламентируется ПУЭ (первая глава «Правил устройства электроустановок»).

У обывателя может возникнуть вопрос: зачем же эти знания неспециалисту? Для чего обычному человеку, не имеющему никакого отношения к работе линий электропередач, знать о конструкции изоляторов, об устройстве опор? Для чего лишние знания? Дело все в том, что эти знания могут оказаться не просто не лишними, но даже кому-то помогут спасти жизнь.

Есть немало примеров, когда отсутствие знаний об электробезопасности приводили к летальным исходам, в частности к некоторым опорам ЛЭП вообще нельзя приближаться ближе некоторого расстояния, это может быть смертельно опасно. Мало того, вблизи некоторых ЛЭП недопустимо располагать какие бы то ни было механизмы. Приведенная выше таблица из 4 главы ПУЭ отражает это положение.

Несчастные случаи на производстве, вызванные незнанием людьми техники электробезопасности и просто недостаточной информированностью, отнюдь не редкость.

Строителям понадобилось включить перфоратор, а электроэнергия на объект еще не была подведена. Поблизости они увидели невысокие опоры ЛЭП, и решили подключить инструмент прямо к проводам. Недолго думая, рабочие взяли в качестве удлинителя длинный провод, зачистили его концы, свернули из них импровизированные крючки, и при помощи деревянного шеста стали зацеплять к проводам. ЛЭП оказалась не на 380 вольт, как они думали, а на 10000 вольт. Один из строителей чудом остался жив, но получил серьезную травму.

Еще один пример. На объект привезли длинные металлические трубы, стропальщик приступил к разгрузке грузовика, совершенно недооценив тот факт, что поблизости проходит высоковольтная ЛЭП на 110кВ. В процессе разгрузочных работ одна из труб оказалась в нескольких сантиметрах от провода.

Стоило стропальщику коснуться трубы стоя на земле, произошел электрический пробой через воздух, и человек погиб. А всего то и нужно было ему посмотреть на изоляторы злополучной линии электропередач, и увидеть, что их там по целых 6 штук в каждой гирлянде… Ведь чем выше напряжение ЛЭП, тем более длинными будут гирлянды изоляторов на ней.

Далее рассмотрим конкретные примеры внешнего вида опор, которые можно встретить сегодня.

ВЛ-0,4кВ

Высоковольтные линии класса 0,4 кВ отличаются маленькими стеклянными или фарфоровыми штыревыми изоляторами, закрепленными на стальных крючках или штырях. Опоры часто железобетонные, но можно кое-где до сих пор встретить и деревянные. Проводов здесь два, если линия однофазная, или четыре и более, если это трехфазная линия. Напряжение между проводниками 220 или 380 вольт. Такие линии можно встретить в коллективных садах и в небольших поселках, где они стоят вдоль дорог.

ВЛ-10кВ

Высоковольтные линии электропередач на 10 кВ имеют большие по размеру изоляторы чем линии класса 0,4 кВ. Широкие изоляторы стеклянные или фарфоровые коричневого цвета, расположены они вертикально на штырях или в виде подвесов на углах по одному или по два на провод, иногда в виде гирлянды из двух изоляторов, а иногда просто три отдельных крупных изолятора на крюках и на штыре. Проводов в линии три.

По таким линиям, проложенным вдоль дорог, электроэнергия подается, например, от городской подстанции в поселок. Итак, главная отличительная особенность линии на 10 кВ — крупные или двойные широкие изоляторы на трех проводах. Раньше, когда широко применялись линии на 6 кВ, они выглядели точно так же.

ВЛ-35кВ

Линии на 35 кВ имеют изоляторы гораздо большего размера. Так же штыревые или подвесные, однако количество изоляторов в гирлянде от трех до пяти. Здесь они тоже фарфоровые или стеклянные. Количество зависит от типа изоляторов и от конструкции опоры.

Железобетонные опоры, либо опоры полностью металлические, имеют широко разнесенные друг от друга токонесущие проводники. Это не обычные столбы, здесь обязательно применяются поперечные держатели, даже если они деревянные (до сих пор можно кое-где такие встретить).

ВЛ-110кВ

В высоковольтных линиях на 110 кВ применяются исключительно подвесные гирлянды из изоляторов. Стеклянные или керамические гирлянды набраны минимум из шести элементов, количество которых варьируется чаще всего от шести до девяти в зависимости от конструкции опоры, но в некоторых случаях изоляторов может быть больше девяти.

Сама опора может быть железобетонной с металлическими поперечинами или полностью металлической, собранной по типу фермы. Каждый провод на отдельном изоляторе — это одиночный провод. Таким образом, если провода одиночные, а изоляторы набраны из 6-8 элементов, то перед вами скорее всего ЛЭП напряжением 110 кВ.

ВЛ-220кВ

Устройство аналогично ЛЭП на 110 кВ, однако изоляторов от десяти штук на гирлянду, часто изоляторы двухсторонние. Изоляторов может быть от десяти до четырнадцати. Так, если перед вами железобетонная или металлическая опора с 10-14 изоляторами, то скорее всего это ЛЭП на 220 кВ. У всех ЛЭП на напряжение от 110 кВ и более – изоляторы подвесные. Нельзя приближаться к проводникам ближе чем на 2 метра — опасно для жизни, как в случае со стропальщиком.

ВЛ-330кВ

Подвесных изоляторов от 14 штук на гирлянду, однако проводов на каждую из фаз по два. Опора железобетонная или металлическая. Воздушные ЛЭП на 330 кВ характерны протяженностью опасной зоной в 2,5 метров в каждую сторону от боковых проводов, ближе человеку находиться нельзя — опасно для жизни. Если изоляторов от 14 до 20 штук, если провода идут по два — это ЛЭП на 330 кВ. Опоры могут быть как металлическими так и железобетонными.

ВЛ-500кВ

Изоляторов от 20 штук на гирлянду, но проводов уже по три на фазу. Характерная опасная зона для человека — ближе 3,5 метров от боковых проводников. Если проводников про три, а изоляторов от 20 на фазу — это ЛЭП на 500 кВ.

ВЛ-750кВ

Изоляторов от 20 штук на гирлянду, как и у ЛЭП на 500 кВ, однако проводов уже по 4-5 на фазу. Характерная опасная зона – 5 метров от боковых проводников. Если проводники располагаются по 4 штуки в форме квадрата или по 5 штук в форме кольца, то перед вами ЛЭП на 750 кВ.

ВЛ-1150кВ

Наконец, ВЛ 1150 кВ — восемь проводов по углам восьмиугольника для каждой фазы. Изоляторов от 50 штук на гирлянду. Если перед вами такая линия, то может быть это участок высоковольтной линии электропередачи «Сибирь-Центр». Не следует приближаться к проводам ближе чем на 8 метров.

ВЛ-10кВ

3.1.1. Общие сведения

Пропускная способность ВЛ устанавливается на основе расчета электрической сети. Средние значения дальности передачи и пропуск­ной способности по линиям электропередачи напряжением 110–1150 кВ приведены в табл. 3.1.

Пропускная способность линий электропередачи 110–1150 кВ

Для ВЛ 750-1150 кВ плотность тока принята равной 0,85 А/мм2.

Линии электропередачи состоят из ВЛ основной и распределительной сети. ВЛ основной сети обеспечивают связь между крупными электростан­циями и передачу мощности от них в районы потребления электроэнер­гии. ВЛ распределительной сети обеспечивают передачу электроэнергии от ПС основной сети и электростанций к потребителям электроэнергии.

При проектировании основной электрической сети энергосистем рекомендуется:

намечать линии электропередачи через крупные узлы нагрузки, из­бегать прямых связей между электростанциями;

производить выбор схемы присоединения электростанции и ПС к основной сети с учетом надежности питания узла электрической сети и необходимости обеспечения транзита мощности по ВЛ;

сооружать между двумя узлами сети по одной трассе, как правило, не более двух линий электропередачи одного напряжения. При необ­ходимости дополнительного усиления сети следует рассматривать це­лесообразность сооружения ВЛ по другим направлениям или выполне­ние электропередачи на более высоком напряжении.

Проектирование распределительной сети энергосистем осуществ­ляется с учетом следующего:

в районах с малым охватом территории сетями при близких значе­ниях технико-экономических показателей вариантов развития сети рекомендуется отдавать предпочтение сооружению ВЛ по новым трас­сам;

в крупных городах и промышленных районах с большой концент­рированной нагрузкой по одной трассе может предусматриваться стро­ительство двух и более ВЛ;

при прохождении ВЛ по территории городов, промышленных рай­онов, на подходах к электростанциям ПС, в стесненных условиях, лес­ных массивах и т. д. ВЛ рекомендуется выполнять на двухцепных опо­рах. При этом подвеска одной цепи рекомендуется в случае, когда не­обходимость ввода второй цепи возникает в срок более трех лет после ввода первой, а также когда отключение первой цепи на время прове­дения работ по подвеске второй допустимо по условиям электроснаб­жения. Допускается подвеска на одних опорах ВЛ разных классов на­пряжений;

при питании ПС с потребителями первой категории применение двух одноцепных ВЛ вместо одной двухцепной допускается при нали­чии обоснований.

При развитии распределительных сетей отдельных номинальных напряжений необходимо учитывать следующие рекомендации.

При напряжении сети 220–330 кВ:

использовать в сети одно- и двухцепные ВЛ 220–330 кВ;

при питании ПС по одноцепной ВЛ с двухсторонним питанием об­щее число промежуточных ПС не должно превышать трех, а длина та­кой ВЛ, как правило, не должно быть больше 250 км;

присоединять к двухцепной ВЛ 220 кВ с двухсторонним питанием до пяти промежуточных ПС. При этом присоединение ПС рекоменду­ется принимать по схеме «мостик» или блочной схеме (от одной или двух ВЛ 220 кВ);

проектировать сеть 220–330 кВ внешнего электроснабжения круп­ных и крупнейших городов с использованием принципа кольцевой конфигурации. В системе электроснабжения таких городов рекомен­дуется предусматривать сооружение не менее двух ПС 220–330 кВ, че­рез которые осуществляется связь с сетью энергосистемы, а питающие ВЛ рекомендуется прокладывать по разным трассам. При присоедине­нии сети крупных и крупнейших городов к энергосистеме рекоменду­ется обеспечивать минимальные транзитные перетоки мощности через городскую сеть. Общее количество и пропускная способность линий, связывающих сети таких городов с энергосистемой, рекомендуется вы­бирать с учетом обеспечения питания городских потребителей без ог­раничений при отключении двухцепной питающей ВЛ 220 кВ;

выполнять, как правило, ПС 220–330 кВ двухтрансформаторными. При большой концентрации нагрузок ПС 330 кВ могут выполняться с установкой трех–четырех трансформаторов. Установка на ПС одного трансформатора допускается временно при обеспечении резервирова­ния потребителей.

При напряжении сети 110 кВ:

не допускать сооружения новых протяженных ВЛ 110 кВ параллель­но существующим ВЛ 220 кВ;

использовать в качестве источников питания сети 110 кВ ПС 220– 330/110 кВ, имеющие независимые питающие линии, и шины 110 кВ электростанций;

обеспечивать двухстороннее питание ПС, присоединенных к одно-цепной ВЛ 110 кВ. Длина такой ВЛ, как правило, не должна быть более 120 км, а количество присоединяемых промежуточных ПС – более трех. Присоединение к такой ВЛ двухтрансформаторных ПС рекомендуется по схеме «мостик». При однотрансформаторной ПС (первый этап раз­вития двухтрансформаторной ПС) присоединение к линии осуществ­ляется по блочной схеме. Допускается присоединение ПС к одноцепной тупиковой ВЛ 110 кВ только па первом этапе развития сети. При этом резервирование ответственных потребителей должно быть обес­печено по сети вторичного напряжения;

осуществлять применение двухцепных ВЛ с двухсторонним пита­нием в системах электроснабжения крупных городов, а также в схемах внешнего электроснабжения потребителей транспортных систем (элек­трифицированные участки железных дорог, продуктопроводов и т.п.). К таким ВЛ рекомендуется присоединение не более пяти промежуточ­ных ПС, с чередованием ПС но схеме «мостик» и блочной схеме;

применять двухцепные тупиковые ВЛ в схемах электроснабжения крупных городов, промузлов, промышленных предприятий и т. п. с при­соединением к такой ВЛ до двух ПС 110 кВ. При этом потребители пер­вой категории таких ПС должны резервироваться по сети вторичного напряжения. К двум одноцепным тупиковым ВЛ может быть присое­динено до трех ПС.

При напряжении сети 35 кВ:

не допускать сооружения новых протяженных ВЛ 35 кВ параллель­но существующим ВЛ 110 кВ и не сооружать новые ВЛ 35 кВ протяжен­ностью свыше 80 км;

оценивать целесообразность сооружения новых ВЛ 35 кВ в габари­тах 110 кВ;

рассматривать возможность перевода существующих ВЛ 35 кВ на напряжение 110 кВ;

использовать преимущественно одноцепные ВЛ 35 кВ с питанием от разных ПС 110–220 кВ или разных секций (систем шин) одной ПС.

Трасса ВЛ выбирается по возможности кратчайшей с учетом усло­вий отчуждения земли, вырубки просек, комплексного использования охранной зоны и приближения к дорогам и существующим ВЛ.

Протяженность намечаемых ВЛ при отсутствии более точных дан­ных может быть принята на 20–25 % больше воздушной прямой (боль­шее значение относится к территориям с высокой плотностью застрой­ки, развитой сетью дорог и инженерных коммуникаций, интенсивной хозяйственной деятельностью). В районах городской и промышленной застройки, а также в других сложных случаях длину ВЛ следует прини­мать с учетом конкретных условий.

Вблизи промышленных предприятий трассы ВЛ, как правило, рас­полагаются вне зон действия ветра преобладающего направления от источников загрязнения.

На железобетонных опорах сооружаются двухцепные ВЛ до 220 кВ включительно. В последние 10–15 лет строительство ВЛ 500 кВ на же­лезобетонных опорах составляло около 40 % общего ввода новых ВЛ. На ВЛ 750–1150 кВ используются металлические опоры. В условиях, когда доставка железобетонных опор па трассу ВЛ затруднена, реко­мендуется использовать металлические опоры.

На ВЛ напряжением 35 кВ и выше рекомендуется применять сталеалюминевые провода. Использование алюминиевых проводов и про­водов из алюминиевого сплава обосновывается расчетами. На больших переходах через водные пространства (ущелья) при наличии техниче­ской целесообразности в качестве проводов могут применяться сталь­ные канаты.

Обозначения марок проводов для ВЛ электропередачи приведены ниже.

Провод скрученный из алюминиевых проволок. А

Провод из алюминиевых проволок и стального сердечника. АС

Провод марки АС, у которого стальной сердечник покрыт

смазкой повышенной теплостойкости и изолированной пленкой. АСК

Провод, скрученный из проволок нетермообработанного

алюминиевого сплава. АН

Провод, скрученный из проволок термообработанного

алюминиевого сплава. АЖ

Сталеалюминевый провод марки АСК, у которого

межпроволочное пространство заполнено смазкой. АСКП

Сталеалюминевый провод марки АСК, у которого

межпроволочное пространство заполнено смазкой. АСКС

Срок службы алюминиевых и медных проводов составляет 45 лет, проводов марки АЖ и АН – 25 лет.

В последние годы на ВЛ 6–10–35 кВ получили распространение самонесущие изолированные провода (СИП). Последняя конструкция такого провода – СИП-3. Это одножильный самонесущий провод с за­щитным покровом. Жила выполнена из алюминиевого сплава высокой прочности или из сталеалюминия.

Рекомендуемая область применения проводов различных марок приведена в табл. 3.2.

Рекомендуемая область применения проводов различных марок

Читайте также:  Кран ПЭ ПЭ: видео-инструкция по выбору своими руками, особенности шаровых изделий ПЭ ВП, цена, фото

Ориентировочная ширина коридоров ВЛ, а также площади посто­янного отвода земли под опоры ВЛ приведены в табл. 3.3 и 3.4. Крите­рии определения площадей отвода земли под опоры ВЛ приведены в постановлении Правительства РФ от 11 августа 2003 г. № 486.

Ориентировочная ширина коридоров ВЛ

В скобках приведены данные для двухцепных опор.

Площадь постоянного отвода земли для типовых опор ВЛ

Напряжение ВЛ, кВХарактеристика промежуточной опорыРазмер постоянного отвода земли на1кмВЛ м2
Стальные опорыЖелезобетонные опоры
35-110Одностоечная65-7035-40
220-330Свободностоящая80-115135-90
500-750Железобетонная свободностоящая, стальная на оттяжках520-1215170
1150Стальная па оттяжках4000

Расчетные данные сталеалюминевых, алюминиевых и проводов из алюминиевых сплавов приведены в табл. 3.5 и 3.6.

Расчетные данные сталеалюмшшевых проводов марок

АС, АСК (ГОСТ 839-80)

Провод марки АСК изготавливается для указанных сечений.

Расчетные данные алюминиевых проводов марки А и проводов

из алюминиевого сплава марок АН, АЖ (ГОСТ 839-80)

Минимальные диаметры проводов ВЛ по условиям короны и ра­диопомех приведены в табл. 3.7.

Минимальный диаметр проводов по условиям короны и радиопомех, мм

Напряжение ВЛ, кВФаза с проводом
одиночнымдва иболее
ПО11,4 (АС70/11)
15015,2 (АС120/19)
22021,6 (АС240/32)
24,0 (АС300/39)
33033,2 (АС600/72)2×21,6 (2 ХАС240/32)
3×15,2 (3 ХАС12О/19)
3×17,1 (3 ХАС150/24)
5002 x36,2 (2 XAC7OO/86)
3 х24,0 (3 хАСЗОО/39)
4×18,8 (4хАС185/29)
7504×29,1 (4 ХАС400/93)
5×21,6 (5 ХАС240/32)

1. Для ВЛ 220 кВ минимальный диаметр провода 21,6 мм относится к горизон­тальному расположению фаз, а в остальных случаях допустим с проверкой по радиопомехам.

2. Для ВЛ 330 кВ минимальный диаметр провода 15,2 мм (три провода в фазе) относится к одноцепным опорам.

Расчетные данные ВЛ 35 кВ и выше со сталеалюминиевыми прово­дами приведены в табл. 3.8 и 3.9.

Расчетные данные ВЛ 35-150 кВ со сталеалюминиевыми проводами

1. Зарядная мощность bо подсчитана для ВЛ 110-330 кВ по среднеэксплуатационному напряжению 1,05 Uном .

2. Усредненные среднегеометрические расстояния между фазами приняты сле­дующими:

Класс напряжения, кВ35110150220330500750
Среднегеометрическое расстояние, м3,55,06,58,011,014,022,7

Расчетные данные ВЛ 220 кВ и выше со сталеалюминиевыми проводами

Потери активной мощности в продольном сопротивлении схемы замещения ВЛ 110 и 35 кВ можно определять по рис. 3.1. При этом cos был принят равным 0,9; при иных значениях cos значения потерь мощ­ности умножаются на 0,81/ cos2.

Потери мощности на корону могут быть приняты по данным табл. 3.10.

Удельные потери мощности на корону на линиях с типовыми конструкциями фаз

Нормы продолжительности проектирования и строительства ВЛ (СНиП 1.04.03-85) приведены в табл. 3.11. Практика проектирования последних лет позволяет считать данные табл. 3.11 завышенными.

Норма продолжительности проектирования и строительства ВЛ

2. Усредненные среднегеометрические расстояния между фазами приняты сле­дующими:

РАСЧЕТ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

Под расчетом линии электропередачи будем понимать определение электрических параметров ее режима: напряжений, токов и мощностей. Такой расчет принято называть расчетом потокорас- пределения. Расчеты удобно делать по мощности нагрузки, т. е. не вычисляя, если это специально не требуется, токи в ветвях схемы. Падение напряжения в сопротивлении Z также можно вычислять через мощность на одном из его концов:

Если совместить напряжение в знаменателе с вещественной осью, го после перемножения комплексных двучленов в числителе (Р – jQ) и (R +jX) будем иметь следующие две формулы для вычисления падения напряжения:

Пусть даны напряжение и мощность в конце линии (Ц2 и S2) (рис. 2.3). Требуется определить напряжение и мощность в начале линии (Ux и §).

Для удобства расчета совместим U2 с действительной осью

U2 — U2> Чтобы определить §, воспользуемся формулой баланса

мощностей (2.10). Назовем последовательность вычислений, составляющих баланс мощностей, алгоритмом 1. Он состоит в следующем:

1) вычислим зарядную мощность в конце схемы замещения ЛЭП Qc2 [см. формулу (2.18)]:

2) найдем мощность в конце ветви сопротивления Z:

3) вычислим потери мощности в сопротивлении Z [см. (2.13)]:

4) найдем мощность в начале ветви сопротивления Z:

5) вычислим падение напряжения на сопротивлении 2

6) найдем напряжение в начале линии:

7) вычислим зарядную мощность в начале схемы замещения ЛЭП:

8) найдем мощность в начале линии:

Расчет выполняется в направлении движения по схеме замещения от конца к началу. Более компактно этот алгоритм можно записать в виде списка величин в последовательности, в которой они вычисляются:

Пример 2.1. Дана двухцепная линия длиной 120 км, выполненная проводом марки АС-240/32, с номинальным напряжением 220 кВ. Мощность в конце линии 140 + у80 MB A, напряжение в конце линии 210 кВ. Расчет приведен в системе Mathcad.

Параметры линии (сопротивления в омах, проводимости в сименсах).

Заданные параметры режима (мощности в мегаваттах и мегаварах, напряжения в киловольтах)

Пусть теперь известна мощность в конце линии, а напряжение- в начале и S2). Такая ситуация чаще всего встречается в

практике, ибо, как правило, задаются нагрузки сети и напряжение на тинах пункта питания.

В этом случае рассчитать линию по алгоритму, подобному приведенному выше, не удается. Единственное, что можно сразу вычислить, – это зарядную мощность в начале схемы замещения ЛЭП (п. 7 алгоритма 1), так как напряжение (У, на емкости в начале схемы известно.

Расчет можно выполнить приближенно. Зададимся приближенным значением напряжения Ц2, например Ц2 = ?/ном, тогда можно вычислить все потоки мощности в ветвях схемы замещения ЛЭП по алгоритму: 2, S/2, AS, S/A, QCI, S)>. После этого определяются падение напряжения AU и напряжение U2 :

Здесь Ц совмещено с действительной осью.

Такой расчет является приближенным (оценочным) и носит название «метод в два этапа»: этап 1 – расчет потокораспределения мощностей <0С2, &2> Ось и этап 2 – расчет режима

Пример 2.2. Рассчитать ЛЭП из примера 2.1 при известном напряжении в начале линии U = 223,584 кВ (намеренно взято напряжение, полученное в примере 2.1).

Заданные параметры режима

Этап 1. Расчет потокораспределения

Этап 2. Расчет режима напряжений

Абсолютная ошибка составляет 0,329 кВ, или 0,14 %.

Другой, более точный, метод состоит в решении уравнения, которое можно получить из (2.8), подставив в уравнение для Ц выражение тока /2 через мощность S2 и напряжение U2, в результате будем иметь

В этом уравнении одно неизвестное – Ц2. Решение приведем в системе Mathcad.

Пример 2.3. Рассчитать напряжение tA в линии из примера 2.1 путем решения уравнения (2.30) при U = 223,584.

Начальное приближение (в комплексном виде):

Решающий блок Mathcad

Given

Этап 1. Расчет потокораспределения

По роду тока

Большинство существующих ЛЭП предназначено для работы с переменным током, что связано с простотой преобразования напряжения по величине.

Отдельные типы линий работают с постоянным током. Они предназначены для некоторых областей применения (питание контактной сети, мощных потребителей постоянного тока), но общая протяженность невелика, несмотря на меньшие потери на емкостной и индуктивной составляющих.


Основными документами, которые регулируют любую ЛЭП, являются Строительные нормы и правила (СНиП), а также Правила устройства электроустановок ПУЭ. Данные документы регламентируют проектирование, конструкцию, строительство и эксплуатацию воздушных линий электропередач.

Классификация ЛЭП по нейтрале

  • Трехфазные сети, в которых нейтраль не заземлена. Обычно такая схема используется в сетях напряжением 3-35 кВ, где протекают малые токи.
  • Трехфазные сети, в которых нейтраль заземлена через индуктивность. Это так называемый резонансно-заземленный тип. В таких ВЛ используется напряжение 3-35 кВ, в которых протекают токи большой величины.
  • Трехфазные сети, в которых нейтральная шина полностью заземлена (эффективно-заземленная). Этот режим работы нейтрали используется в ВЛ со средним и сверхвысоким напряжением. Обратите внимание, что в таких сетях необходимо использовать трансформаторы, а не автотрансформаторы, в которых нейтраль заземлена наглухо.
  • И, конечно, сети с глухозаземленной нейтралью. В таком режиме работают ВЛ напряжением ниже 1,0 кВ и выше 220 кВ.

К сожалению, существует и такое разделения линий электропередач, где учитывается эксплуатационное состояние всех элементов ЛЭП. Это ЛЭП в нормальном состоянии, где провода, опоры и другие составляющие находятся в приличном состоянии. В основном упор делается на качество проводов и тросов, они не должны быть оборваны. Аварийное состояние, где качество проводов и тросов оставляет желать лучшего. И монтажное состояние, когда производится ремонт или замена проводов, изоляторов, кронштейнов и других компонентов ЛЭП.

Схема воздушных линий электропередач


Схема воздушных линий электропередач

Как отличить воздушные линии электропередач (ВЛ)

Рейтинг: 5 / 5 9 0 Как отличить воздушные линии электропередач (ВЛ)

Любите ли вы путешествовать на поездах, автобусах или автомобиле? Если да, наверняка большую часть пути вас сопровождают различные воздушные линии, состоящие из кабелей или проводов и опор. Линии связи придают дороге особую романтику оттого, что по ним с помощью электрических сигналов связываются между собой люди, разделенные огромным расстоянием. Еще можно встретить «вымирающие» из-за сотовой связи и Интернета телеграфные столбы, передающие телеграммы. Однако над всеми этими линиями стоят линии электропередачи, передающие электрическую энергию от ее источника к ее потребителям.

Обычно воздушные линии электропередачи (ЛЭП) легко отличить от линий связи благодаря их огромным размерам. Так, например, линия «Итат — Барнаул — Экибастуз — Кокшетау — Костанай — Челябинск», возведенная в 1980-х годах, имеет длину 2350 км и среднюю высоту опор 45 метров. Расстояние между проводами соседних фаз на участке «Экибастуз-Кокчетау», спроектированном на рекордное напряжение 1150 кВ, составляет более 8 метров. Выше представлено фото этой линии.

Чем обусловлено такое больше расстояние между проводами? Можно ли его сделать меньше? Чтобы ответить на эти вопросы, надо узнать об электрической прочности и напряжении пробоя воздуха, из которого фактически состоит изоляция линий электропередачи. При напряженности электрического поля величиной 30 000 000 вольт на 1 метр происходит пробой воздушного промежутка – электрический разряд в воздухе. Расстояние между проводами регламентировано в ПУЭ и СНиП и принимается с учетом пляски и вибрации проводов и неблагоприятных погодных условий. Провода могут быть самонесущими изолированными – СИП, не требующими изоляторов (применяются в сетях до 35 кВ), или алюминиевыми или сталеалюминиевыми сечением до 240 мм 2 . Медные провода не используют из-за их высокой массы.

Подобным же образом длина и количество изоляторов, отделяющих провода воздушной линии (ВЛ) от заземленных опор, которые могут быть выполнены из металла, железобетона или дерева, обусловлена электрической прочностью изоляторов. Как материалы для изоляторов используют электротехнический фарфор и малощелочное закаленное стекло. Устройство воздушных ЛЭП разного напряжения обусловлено, помимо характеристик воздуха, электрической прочностью и пробивным напряжением изоляторов – до 200 кВ на один изолятор. Зная это, можно понять, как определить напряжение ВЛ по внешнему виду и не только. Например, гуляя с ребенком по парку Дружбы народов в Минске, не составит труда ответить ему, когда он спросит: «Папа, а сколько вольт в ЛЭП?»

Начнем по порядку. Минимальное напряжение воздушной линии – 0.4 кВ. Опоры такой линии небольшие и могут напоминать телеграфные столбы. Могут использоваться и как фонарные столбы. На их траверсах обычно 5 проводов, которые крепятся на маленькие стеклянные или фарфоровые изоляторы размером чуть больше баночек для детского питания.

Фото 1. Воздушная линия 0.4 кВ

Трансформаторы в селах и деревнях питаются от ВЛ напряжением 6-10 кВ. Опоры этих линий выше, 8 метров или больше, провода три. Изоляторы (один или два) размером напоминают пол литровую банку. Сети 6-10 кВ преимущественно выполняются с изолированной нейтралью.

Фото 2. Линия электропередач 6-10 кВ

ЛЭП напряжением 35 кВ, следовательно, имеют еще большие размеры. Высота опор около 17 метров, на этих линиях используются гирлянды из трех изоляторов. Стеклянные изоляторы хороши тем, что при пробое они разрушаются, это легко заметить, и техническое обслуживание и диагностика таких воздушных линий электропередачи сравнительно легки.

Фото 3. ЛЭП 35 кВ

Следующий ряд напряжений – 110, 220, 330, 500 кВ. Опоры высотой 35-45 метров. Со стороны проводов слышен характерный треск, возникающий из-за коронного разряда. Вокруг проводов линий 330 кВ ночью можно увидеть свечение, вызванное разрядами. Гирлянды содержат минимум 6, 10, 14, 20 изоляторов. Количество проводов в одной фазе – 1, 1, 2, 3 соответственно. ЛЭП 750 кВ отличаются от ЛЭП 500 кВ количеством проводов в фазе – 4 или более вместо трех.

Фото 4. ЛЭП 110, 220, 330, 500, 750 кВ

И в заключении хочется добавить, что наша компания на данный момент пока еще не занимается монтажом, но осуществляет измерения и испытания, в том числе и ВЛ 0,4.

Фото 2. Линия электропередач 6-10 кВ

Определение безопасных расстояний до высоковольтных ЛЭП


Достаточно распространена ситуация, когда в районе садового товарищества, коттеджного поселка или другой застройки проходит высоковольтная ЛЭП. Интуитивно, иногда обоснованно, иногда нет, покупатели недвижимости воспринимают ЛЭП как источник повышенной опасности. Понятно, когда
речь идет о «проводах» непосредственно над головой, обрыв которых может привести к поражению электрическим током. Но риэлторы знают, что такие же опасения высказываются и в случаях, когда ЛЭП просто «рядом», причем речь может идти о ЛЭП в сотнях метров, о территории, которая не будет доступна покупателю ни для занятия спортом, ни для отдыха или другого доступа, например, если это соседние участки. На аргументы покупателя недвижимости типа – «очень близко ЛЭП» – риэлторам и продавцам недвижимости, как правило, нечего противопоставить, так как у них нет
соответствующего инструментария. Для восполнения пробела мною была разработана
соответствующая «Методика для риэлтора…, 2008 г., 14 с.», фрагменты которой приводятся здесь.
1. Влияние электрического поля на организм человека, животных и растения
Интенсивное электрическое поле промышленной частоты (в России – 50 Гц) вызывает нарушение функционального состояния центральной нервной и сердечно-сосудистой системы человека. Субъективно это выражается в ухудшении самочувствия работающих, повышенной утомляемости, вялости, головных болях, плохом сне, болях в сердце и.т.п.
Проживание человека в электрическом поле повышенной напряженности в 1,5-3 раза повышает вероятность сердечно-сосудистых заболеваний, лейкемии, опухолей мозга.
Еще один эффект воздействия высоковольтных ЛЭП на экологическую обстановку – создаваемый ими
шум при хорошей погоде и особенно во время дождя. Шум вызывается коронным разрядом на проводах. При наличии капель дождя на проводе возникает новый процесс, связанный с деформацией заряженных капель и их отрывом от поверхности провода. Уровень шума при дожде на расстоянии 100 м от провода допускается в 35-70 дБ. Для ЛЭП 750 кВ и ниже уровень шума на таком расстоянии получается в пределах допустимого.
2. Допустимые значения напряженности электрического поля в районе жилой застройки, земельных участков для садоводства и огородничества и прочих территорий
В соответствии с Санитарными нормами /1/ качестве предельно допустимых уровней приняты следующие значения напряженности электрического поля:
– внутри жилых зданий – 0,5 кВ/м;
– на территории зоны жилой застройки – 1 кВ/м;
– в населенной местности, вне зоны жилой застройки (земли городов в пределах
городской черты в границах их перспективного развития на 10 лет, пригородные и
зеленые зоны; курорты, земли поселков городского типа, в пределах поселковой
черты и сельских населенных пунктов, в пределах черты этих пунктов), а также на
территории огородов и садов – 5 кВ/м.
В зависимости от продолжительности пребывания человека в электрическом поле высоковольтных ЛЭП могут использоваться следующие нормативы, /2/:
Напряженность поля, кВ/м // допустимое время пребывания в течение 8-часового рабочего дня:
5/8 ч, 10/ 3 ч, 15/1,3 ч, 20-25/10 мин, более 25/ 0 мин.
3. Определение безопасных расстояний до высоковольтных ЛЭП
Электрическое поле, как и другие поля (акустическое, магнитное, гравитационное) ослабевают при удалении от источника поля. Поэтому основным способом защиты населения от воздействия электрического поля является установление санитарно- защитных зон по обе стороны от крайних
фазных проводов в направлении перпендикулярном к ЛЭП.
В соответствии с /1/ установлены следующие размеры санитарно-защитной зоны для ЛЭП сверхвысокого (более 330 кВ) напряжения:
Напряжение ЛЭП, кВ/ Протяженность санитарно-защитной зоны, м:
1150/55, 750/40, 500/30, 330/20
Размер санитарно-защитной зоны устанавливается с тем расчетом, чтобы напряженность электрического поля вне пределов зоны не превышала 1 кВ/м (см. п. 2).
По Санитарным нормам /1/ считается, что для других высоковольтных ЛЭП (220 кВ и ниже) защита населения от их электромагнитного поля не требуется при условии удовлетворения этих ЛЭП
Правилам устройства электроустановок. В частности, в этих Правилах речь будет идти о высоте подвеса фазных проводов и обеспечиваемом за счет их подъема удалении от человека.
Ранее действовавшие Московские городские строительные нормы /3/ устанавливали следующие охранные зоны в зависимости от напряжения ЛЭП:
Напряжение ЛЭП, кВ/Протяженность санитарно-защитной зоны, м:
1150/55, 750/40, 330-500/30, 150,220/25, 110/20, 35/15, Менее20/10.
Как видим, нормы /3/ устанавливали более жесткие требования по протяженности охранной зоны для высоковольтных ЛЭП с напряжением менее 330 кВ. По моему мнению, имеющиеся расчеты напряженностей поля различных распределительных сетей позволяют сделать вывод, что как минимум для ЛЭП 5 -35 кВ значения напряженности электрического поля в охранной зоне, определенной по /3/, будут заведомо ниже 1 кВ/м. Вероятно, разработчики норм /3/ исходили из того, что вне зависимости от напряженности электрического поля, высоковольтная ЛЭП должна
иметь охранную зону, чтобы, как указано в /3/, нельзя было размещать в этой зоне: жилые и общественные здания, площадки для остановки всех видов транспорта, автозаправочные станции, спортивные площадки, стадионы, рынки, не проводить мероприятия, связанные со скоплением большого количества людей. То есть исключить тем самым и другие источники опасности, вызванные близостью ЛЭП (поражение током, возгорание и др.). Нормы /3/ можно использовать как справочные.
Относительно шумового загрязнения высоковольтными ЛЭП окружающей среды можно заметить следующее. Для линий сверхвысокого (более 330 кВ) напряжения зона комфортного удаления от ЛЭП будет в несколько раз превосходить зону, где уровень напряженности электрического поля не превышает 1 кВ/м. Другими словами, если ЛЭП «шумит», но шум от ЛЭП не беспокоит (воспринимается как тихая комната, шепот, работа малошумного холодильника), то и с уровнем напряженности электрического поля в этом месте будет все в порядке. Шум от ЛЭП – косвенный признак высоких значений напряжения. Если ЛЭП «не шумит», принимается во внимание только
возможное значение напряженности электрического поля в рассматриваемом месте.
Нормы /1/ и /3/ явно грешат упрощенным подходом к определению санитарно-защитной зоны. Вряд ли, в нормах /1/ и /3/ рассматривалось все многообразие конструктивных схем распределения
электрической энергии при помощи ЛЭП (несколько линий на одной опоре, компактные линии, учет провисания проводов и т.д.). Маловероятно, что в нормах /1/ и /3/ размеры санитарно-защитных зон принимались с гарантированным запасом. Это экономически нецелесообразно.
По вышеназванным причинам возникает желание определить значение охранной зоны, где уровень напряженности электрического поля меньше 1 кВ/м, расчетным или экспериментальным путем.
Методика расчетного определения напряженности электрического поля известна. Однако на практике воспользоваться ею затруднительно. В частности для расчета требуются диаметры, высоты подвеса и удаление друг от друга всех фазных проводов, /4/. Вместо сбора этих данных и производства расчета проще выполнить замеры напряженности поля или ограничиться более простыми способами. Производство замеров будет особенно актуально, если ЛЭП удалена от участка всего на несколько метров (3-20), а напряжение в ней относительно низкое (10-110 кВ). Применение «мягких» норм /1/ может быть рискованно для покупателя недвижимости, применение «жестких» норм /3/ может быть невыгодным для продавца. В этом случае каждая из сторон сделки будет заинтересована в установлении объективной картины по уровням напряженности поля
при помощи замеров.
…………..
«Методика…» содержит практические рекомендации риэлторам по оперативному определению
экологической обстановки в районе ЛЭП и формированию переговорной позиции при представлении интересов как продавца, так и покупателя недвижимости, формы соответствующих протоколов.
……….
В качестве развлечения для тех, кто еще не заснул, читая этот блог.

«5.3.1.4. Из практики переговоров продавца и покупателя
5.3.1.4.1.
Продавец: «Я 17 лет живу на этой даче, разве я выгляжу больным?»
Вариант 1 возможного ответа покупателя: «Как говорят медики, нет здоровых людей, есть недообследованные».
Вариант 2 возможного ответа покупателя: « Воздействие электрического поля носит накопительный характер. После набора определенной дозы воздействия поля могут возникнуть заболевания (сердечные, раковые). Поэтому я хочу опираться не на предположения, а на действующие нормативы и объективные данные».
5.3.1.4.2.
Продавец: «Мы каждый день говорим по сотовому телефону. Разве сегодня можно избежать воздействия электромагнитных полей?»
Возможный ответ покупателя: « Говорить по сотовому телефону или нет – это Ваш выбор. Если же я куплю дачу с повышенным уровнем электрического поля, я себя и своих детей такого выбора лишу.
Поэтому. » (Дальше – о скидках, об определении площади участка, которой можно пользоваться без ограничений, о защитных зонах, о замерах напряженности поля и т.п.).
5.3.1.4.3.
Продавец: « Никто на наших дачах не умер, ни от рака, ни от сердечных заболеваний».
Возможный ответ покупателя: « Основные причины смерти в нашей стране – именно сердечно-сосудистые и раковые заболевания. Что этому способствовало в большей степени – условия в
районе Вашей дачи, в квартирах или что-то другое – установить невозможно, но предположение сделать можно».
5.3.1.4.4.
Продавец: « В наших квартирах сотни метров электрических проводов, которые опутывают нас со всех сторон – и ничего. ».
Возможный ответ покупателя: «Напряжение в наших квартирных проводах 220 В или 380 В, в Вашей же ЛЭП – . кВ, а это в . (сто, тысячу) раз больше. К тому же наши квартиры сделаны из железобетона или из кирпича с армирующей сеткой. Все это –
экраны от электромагнитного поля. В каждом доме при вводе в эксплуатацию проводятся замеры напряженности электрического поля».
Литература
1.Санитарные нормы и правила защиты населения от воздействия электрического поля,
создаваемого воздушными линиями электропередачи переменного тока промышленной
частоты (утв. Минздравом СССР 23.02.1984, N 2971-84).
2. ГОСТ 12.1.002-84. Система
стандартов безопасности труда. Электрические поля промышленной частоты.
Допустимые уровни напряженности и требования к проведению контроля на рабочих местах.
3. МГСН 2.03-97. Система нормативных документов в строительстве. Московские городские
строительные нормы. Допустимые параметры электромагнитных излучений в помещениях жилых и общественных зданий и на селитебных территориях.
4. Влияние воздушных линий электропередачи и распределительных устройств подстанций на экологию окружающей среды.http://www.dvqps.ru/
5. Методические указания по определению электромагнитного поля воздушных высоковольтных линий электропередачи и гигиенические требования к их размещению. Утверждены Заместителем главного государственного санитарного врача СССР Э.М. Саакъянц 30 мая 1985 года N4109-86.

Читайте также:  Можно ли красить водоэмульсионной краской по эмали

Мозги бы вправить писателям подобных “Методик для риэлтора”. Так бы и написали – для ЛЭП с таким-то напряжением охранная зона столько-то метров.

Да, а на каком расстоянии безопасно-то стандартная ЛЭП? Я так и не поняла, разъясните,пожалуйста КРАТКО!

«5.3.1.4. Из практики переговоров продавца и покупателя
5.3.1.4.1.
Продавец: «Я 17 лет живу на этой даче, разве я выгляжу больным?»
Вариант 1 возможного ответа покупателя: «Как говорят медики, нет здоровых людей, есть недообследованные».
Вариант 2 возможного ответа покупателя: « Воздействие электрического поля носит накопительный характер. После набора определенной дозы воздействия поля могут возникнуть заболевания (сердечные, раковые). Поэтому я хочу опираться не на предположения, а на действующие нормативы и объективные данные».
5.3.1.4.2.
Продавец: «Мы каждый день говорим по сотовому телефону. Разве сегодня можно избежать воздействия электромагнитных полей?»
Возможный ответ покупателя: « Говорить по сотовому телефону или нет – это Ваш выбор. Если же я куплю дачу с повышенным уровнем электрического поля, я себя и своих детей такого выбора лишу.
Поэтому. » (Дальше – о скидках, об определении площади участка, которой можно пользоваться без ограничений, о защитных зонах, о замерах напряженности поля и т.п.).
5.3.1.4.3.
Продавец: « Никто на наших дачах не умер, ни от рака, ни от сердечных заболеваний».
Возможный ответ покупателя: « Основные причины смерти в нашей стране – именно сердечно-сосудистые и раковые заболевания. Что этому способствовало в большей степени – условия в
районе Вашей дачи, в квартирах или что-то другое – установить невозможно, но предположение сделать можно».
5.3.1.4.4.
Продавец: « В наших квартирах сотни метров электрических проводов, которые опутывают нас со всех сторон – и ничего. ».
Возможный ответ покупателя: «Напряжение в наших квартирных проводах 220 В или 380 В, в Вашей же ЛЭП – . кВ, а это в . (сто, тысячу) раз больше. К тому же наши квартиры сделаны из железобетона или из кирпича с армирующей сеткой. Все это –
экраны от электромагнитного поля. В каждом доме при вводе в эксплуатацию проводятся замеры напряженности электрического поля».
Литература
1.Санитарные нормы и правила защиты населения от воздействия электрического поля,
создаваемого воздушными линиями электропередачи переменного тока промышленной
частоты (утв. Минздравом СССР 23.02.1984, N 2971-84).
2. ГОСТ 12.1.002-84. Система
стандартов безопасности труда. Электрические поля промышленной частоты.
Допустимые уровни напряженности и требования к проведению контроля на рабочих местах.
3. МГСН 2.03-97. Система нормативных документов в строительстве. Московские городские
строительные нормы. Допустимые параметры электромагнитных излучений в помещениях жилых и общественных зданий и на селитебных территориях.
4. Влияние воздушных линий электропередачи и распределительных устройств подстанций на экологию окружающей среды.http://www.dvqps.ru/
5. Методические указания по определению электромагнитного поля воздушных высоковольтных линий электропередачи и гигиенические требования к их размещению. Утверждены Заместителем главного государственного санитарного врача СССР Э.М. Саакъянц 30 мая 1985 года N4109-86.

Низковольтные и высоковольтные линии тока

Низковольтное и высоковольтное энергоснабжение — это два принципиально разных способа передачи электрического монстра. Но, как ложка хороша к обеду, также и напряжение желательно использовать по назначению. Начнём с того, что такое низковольтное напряжение. И наконец, я расскажу ответ на самый волнительный вопрос: какую дорогу и как проходит электрический монстр прежде чем попасть к нам домой? Но обо всем по порядку.

Итак, низковольтное напряжение — это то, что трещит в наших с вами розетках. Низковольтное напряжение очень полезно, так как даёт максимальную мощность при минимальных затратах на проводники. Чтобы передавать электричество напряжением 220 В и силой тока 16 А, достаточно двужильного провода сечением 1,5 – 2,5мм. Это общепринятый стандарт, под который делают все электроприборы на территории Европы и Азии. В Америке и Канаде стандарт напряжения — 110 В, там свои электроприборы, имеющие специальные вилки. Разница в напряжении в данном случае не так важна, ведь оба стандарта являются низковольтными. И оба достаточно опасны для человека, но удар электрическим током от розетки едва ли способен покалечить взрослого человека. Если только мы не говорим про продолжительный контакт с проводами, в этом случае последствия наверняка будут серьезнее. Так вот, если подвести черту под все, о чем мы только что говорили, получится, что такой ток не нуждается в дорогостоящем электропроводе, также он не требует специальных электроприборов и по сути своей практически безопасен. Он отлично подходит для жилых помещений, офисов и производств. Не стоит забывать, что для низковольтного напряжения значения обычно находятся между 12 В и 380 В, так что даже некоторые производства могут работать от низковольтной сети.

Высоковольтные линии электропередач — это специальные трассы для передачи электричества огромной мощности на длительные расстояния. Напряжение таких сетей колоссально и может варьироваться от 1 кВ до 1150 кВ. Но у такого способа есть плюсы. Он предполагает меньшее количество потерь, нежели низковольтное, при передаче электричества на большое расстояние. Эти потери могут быть связаны с огромным количеством факторов. Первый из них — это сопротивление, постоянная величина для каждого материала, которая измеряется в Омах. Все помнят законы Ома? Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Исходя из этого, понятно, что много мощности теряется для преодоления сопротивления в проводнике. Также колоссальные потери происходят при создании электромагнитного поля вокруг проводника и его нагрев. К сожалению, это те потери, с которыми сложно бороться, но есть решение — многократно увеличить мощность передаваемого тока. Тогда в процентном соотношении потери в том же самом проводнике, будут в несколько раз меньше. Вот для этого и нужно высокое напряжение.

В завершении немного о том, как электрический монстр с электростанции попадает к нам домой. Представим, что мы берем электричество на теплоэлектростанции. Я вас могу шокировать, но пока электричество попадет в ваш дом с напряжением 220 В и 50 Гц, ему нужно пройти семь технологических этапов. Итак, первым этапом при движении электричества будет тепловая электростанция. С нее подается ток определенного напряжения — как правило, оно равно 12 кВ. С теплоэлектростанции электричество попадет на подстанцию с повышающими трансформаторами, которые повышают напряжение с 12кВ до 400 кВ. Таким образом мы преодолеваем максимальное количество потерь и получаем магистральную линию электропередач. Кстати, напряжение таких линий электропередач может быть колоссальным и достигать 1150 кВ киловольт или 1,15 МВ (мегавольта). Далее, как вы уже догадываетесь, магистральная линия электропередач заканчивается подстанцией, на которой стоит понижающий трансформатор, который возвращает напряжение 12 кВ. Зачем? Дело в том, что очень сложно до каждого поселка или деревни построить мощную ветку электроснабжения, а вот 12-киловаттную — пожалуйста. Движемся дальше, пункт шестой: снова понижающий трансформатор, после которого мы получаем электричество с уже знакомым напряжением в 220 В. Вот такой нелегкий путь, но он выходит намного дешевле при передаче тока на большие расстояния.

В следующей статье, мы расскажем про трансформаторы и их принцип действия.

В завершении немного о том, как электрический монстр с электростанции попадает к нам домой. Представим, что мы берем электричество на теплоэлектростанции. Я вас могу шокировать, но пока электричество попадет в ваш дом с напряжением 220 В и 50 Гц, ему нужно пройти семь технологических этапов. Итак, первым этапом при движении электричества будет тепловая электростанция. С нее подается ток определенного напряжения — как правило, оно равно 12 кВ. С теплоэлектростанции электричество попадет на подстанцию с повышающими трансформаторами, которые повышают напряжение с 12кВ до 400 кВ. Таким образом мы преодолеваем максимальное количество потерь и получаем магистральную линию электропередач. Кстати, напряжение таких линий электропередач может быть колоссальным и достигать 1150 кВ киловольт или 1,15 МВ (мегавольта). Далее, как вы уже догадываетесь, магистральная линия электропередач заканчивается подстанцией, на которой стоит понижающий трансформатор, который возвращает напряжение 12 кВ. Зачем? Дело в том, что очень сложно до каждого поселка или деревни построить мощную ветку электроснабжения, а вот 12-киловаттную — пожалуйста. Движемся дальше, пункт шестой: снова понижающий трансформатор, после которого мы получаем электричество с уже знакомым напряжением в 220 В. Вот такой нелегкий путь, но он выходит намного дешевле при передаче тока на большие расстояния.

Добавить комментарий